loj #6302. 「CodePlus 2018 3 月赛」寻找车位【线段树+单调队列】

考虑静态怎么做:枚举右边界,然后枚举上边界,对应的下边界一定单调不降,单调栈维护每一列从当前枚举的右边界向左最长空位的长度,这样是O(nm)的
注意到n>=m,所以m<=2000,可以枚举右边界,然后考虑怎么快速知道当前枚举的右边界向左最长空位的长度
用线段树维护行,每个节点都维护一段连续的列,p[ro][i]表示当i列从ro的区间最上面开始有多少行是全空的,q[ro][i]表示从下,v[ro][i]表示i列向左扩展最大的最大全空正方形的边长,大概是下面这种感觉:

然后p和q合并的时候类似HOTEL那题,看看左右儿子是否全空来决定直接继承还是加上另一段(因为不涉及其他列所以比较好写)
然后合并l行到r行的v的时候用单调递增的单调队列,分别维护左儿子的q和右儿子的p,从左到右扫,维护当前[l,r]里的最大正方形
询问的时候是按顺序把查询区间里的值都合并到一起,注意是按顺序!

#include<iostream>
#include<cstdio> 
using namespace std;
const int N=4000005;
int n,m,Q,len[N<<2],ql[N],qr[N],ll,lr,rl,rr;
struct qwe
{
	int f[N<<2];
	int* operator [](int x)
	{
		return f+x*m;
	}
}a,p,q,v;
int read()
{
	int r=0,f=1;
	char p=getchar();
	while(p>'9'||p<'0')
	{
		if(p=='-')
			f=-1;
		p=getchar();
	}
	while(p>='0'&&p<='9')
	{
		r=r*10+p-48;
		p=getchar();
	}
	return r*f;
}
void ud(int ro,int ls,int rs)
{
	ll=rl=1,lr=rr=0;
	for(int i=1,j=1;i<=m;i++)
	{
		while(rl<=rr&&q[ls][qr[rr]]>q[ls][i])
			rr--;
		qr[++rr]=i;
		while(ll<=lr&&p[rs][ql[lr]]>p[rs][i])
			lr--;
		ql[++lr]=i;
		while(ll<=lr&&rl<=rr&&q[ls][qr[rl]]+p[rs][ql[ll]]<i-j+1)
		{
			if(qr[rl]<=j)
				rl++;
			if(ql[ll]<=j)
				ll++;
			j++;
		}
		v[ro][i]=max(i-j+1,max(v[ls][i],v[rs][i]));
	}
	for(int i=1;i<=m;i++)
		p[ro][i]=(p[ls][i]==len[ls])?len[ls]+p[rs][i]:p[ls][i];
	for(int i=1;i<=m;i++)
		q[ro][i]=(q[rs][i]==len[rs])?len[rs]+q[ls][i]:q[rs][i];
}
void build(int ro,int l,int r)
{
	len[ro]=r-l+1;
	if(l==r)
	{
		for(int i=1;i<=m;i++)
			p[ro][i]=q[ro][i]=v[ro][i]=a[l][i];
		return;
	}
	int mid=(l+r)>>1;
	build(ro<<1,l,mid);
	build(ro<<1|1,mid+1,r);
	ud(ro,ro<<1,ro<<1|1);
}
void update(int ro,int l,int r,int x,int y)
{
	if(l==r)
	{
		p[ro][y]=q[ro][y]=v[ro][y]=a[x][y];
		return;
	}
	int mid=(l+r)>>1;
	if(x<=mid)
		update(ro<<1,l,mid,x,y);
	else
		update(ro<<1|1,mid+1,r,x,y);
	ud(ro,ro<<1,ro<<1|1);
}
int hb(int la,int ro,int l,int r)
{
	ll=rl=1,lr=rr=0;
	int nw=0;
	for(int i=l,j=l;i<=r;i++)
	{
		while(rl<=rr&&q[la][qr[rr]]>q[la][i])
			rr--;
		qr[++rr]=i;
		while(ll<=lr&&p[ro][ql[lr]]>p[ro][i])
			lr--;
		ql[++lr]=i;
		while(ll<=lr&&rl<=rr&&q[la][qr[rl]]+p[ro][ql[ll]]<i-j+1)
		{
			if(qr[rl]<=j)
				rl++;
			if(ql[ll]<=j)
				ll++;
			j++;
		}
		nw=max(nw,i-j+1);
	}
	for(int i=l;i<=r;i++)
		p[la][i]=(p[la][i]==len[la])?len[la]+p[ro][i]:p[la][i];
	for(int i=l;i<=r;i++)
		q[la][i]=(q[ro][i]==len[ro])?len[ro]+q[la][i]:q[ro][i];
	len[la]+=len[ro];
	return nw;
}
int ques(int ro,int l,int r,int x,int xx,int y,int yy)
{
	if(l==x&&r==xx)
	{
		int nw=hb(0,ro,y,yy);
		for(int i=y;i<=yy;i++)
			nw=max(nw,min(i-y+1,v[ro][i]));
		return nw;
	}
	int mid=(l+r)>>1;
	if(xx<=mid)
		return ques(ro<<1,l,mid,x,xx,y,yy);
	else if(x>mid)
		return ques(ro<<1|1,mid+1,r,x,xx,y,yy);
	else
	{
		int nw=ques(ro<<1,l,mid,x,mid,y,yy);
		return max(nw,ques(ro<<1|1,mid+1,r,mid+1,xx,y,yy));//因为要求按从前往后的顺序合并所以不能直接max两个函数,max的时候处理顺序可能会反
	}
}
int main()
{
	n=read(),m=read(),Q=read();
	for(int i=1;i<=n;i++)
		for(int j=1;j<=m;j++)
			a[i][j]=read();
	build(1,1,n);
	while(Q--)
	{
		int o=read();
		if(o==0)
		{
			int x=read(),y=read();
			a[x][y]^=1;
			update(1,1,n,x,y);
		}
		else
		{
			int x=read(),y=read(),xx=read(),yy=read();
			for(int i=1;i<=m;i++)
				p[0][i]=q[0][i]=v[0][i]=0;
			len[0]=0;
			printf("%d\n",ques(1,1,n,x,xx,y,yy));
		}
	}
	return 0;
}
posted @ 2019-02-23 15:47  lokiii  阅读(285)  评论(0编辑  收藏  举报