Hadoop进阶算法-矩阵相乘

1、结果矩阵r=左矩阵aX右矩阵b(i表示行,j表示列)

根据矩阵乘法规则:r11=(a11,a12,a13,a14)X(b11,b21,b31,b41),即左矩阵每一行 X 右矩阵每一列 = 结果每一个数据,对于矩阵定义与运算不多说,大家应该都熟悉。

因为hadoop获取数据都是一行一行获取,所以需要将右矩阵进行转置后,再进行运算。

2、右矩阵转置后的形式:

r11=(a11,a12,a13,a14)X(b11,b21,b31,b41),即变成:左矩阵每一行 X 右矩阵每一行 = 结果每一个数据

3、 转置代码:

3.1map阶段

复制代码
import java.io.IOException;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MapMatrixTranspose extends Mapper<LongWritable,Text,Text,Text>{
    private Text OUTKEY = new Text();
    private Text OUTVALUES = new Text();
    /**
     * key:1
     * values:1_1,2_2,3_-1,4_0
     * 1    1_-1,2_1,3_4,4_3,5_2
     * 2    1_4,2_6,3_4,4_6,5_1
     * 
     * 说明:矩阵与矩阵相乘(左行X右列),考虑到hadoop是按行读取,所以需要先将右矩阵进行转置,变成(左行X右行)
     */
    @Override
    protected void map(LongWritable key, Text values, Context context) throws IOException, InterruptedException {
        //按行获取内容,每次读取一行(元素与元素之间以tab键分割);
        String[] rowAndLines = values.toString().split("\t");
        //行号
        String row = rowAndLines[0];
        //每行内容
        String[] lines = rowAndLines[1].split(",");
        //循环输出内容 key:列号   value:行号_值,行号_值,行号_值,行号_值
        for (String line : lines) {
            String colunm = line.split("_")[0];  //获取列号
            String value = line.split("_")[1];   //获取每列的值
            OUTKEY.set(colunm);
            OUTVALUES.set(row + "_" + value);
            //输出
            context.write(OUTKEY, OUTVALUES);
        }
    }
}
复制代码

3.2 reduce阶段

复制代码
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class ReduceMatrixTranspose extends Reducer<Text, Text, Text, Text>{
    private Text OUTKEY = new Text();
    private Text OUTVALUES = new Text();
    //key:列号 value:行号_值,行号_值,行号_值,行号_值
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException {
        StringBuilder sb = new StringBuilder();
        for (Text text : values) {
            //text:行号_值
            sb.append(text + ",");
        }
        String result = null;
        if(sb.toString().endsWith(",")){
            result = sb.substring(0, sb.length()-1);
        }
        //设置key,value
        OUTKEY.set(key);
        OUTVALUES.set(result);
        context.write(OUTKEY, OUTVALUES);
    }
}
复制代码

3.3测试map和reduce阶段代码并将结果输出到hdfs文件中:

复制代码
import java.io.IOException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
/**
 * 主方法
 * @author lowi
 */
public class Transpose {
    private static String inPath = "/user/step1_matrixinput/rightmatrix.txt";
    private static String outPath = "/user/step1_matrixout";
    //hdfs地址
    private static String hdfs = "hdfs://localhost:9000";
    public static int run(){
        try {
            // 创建conf配置
            Configuration conf = new Configuration();
            // 设置hdfs地址
            conf.set("fs.defaultFS", hdfs);
            // 创建job实例
            Job job = Job.getInstance(conf, "step1");
            //设置job主类
            job.setJarByClass(Transpose.class);
            //设置job的map类与reduce类
            job.setMapperClass(MapMatrixTranspose.class);
            job.setReducerClass(ReduceMatrixTranspose.class);
            //设置mapper输出类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Text.class);
            //设置reduce输出类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            FileSystem fs = FileSystem.get(conf);
            //设置输入、输出路径
            Path inputPath = new Path(inPath);
            if(fs.exists(inputPath)){
                FileInputFormat.addInputPath(job, inputPath);
            }
            Path outputPath = new Path(outPath);
            fs.delete(outputPath, true);
            FileOutputFormat.setOutputPath(job, outputPath);
            return job.waitForCompletion(true)?1:-1;
        } catch (IOException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        }
        return -1;
    }
    //主方法
    public static void main(String[] args) {
        int result = -1;
        result = Transpose.run();
        if(result == 1){
            System.out.println("矩阵转置成功========");
        }else {
            System.out.println("矩阵转置失败========");
        }
    }
}
复制代码

4、矩阵相乘

4.1map阶段

复制代码
import java.io.BufferedReader;
import java.io.FileReader;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;
public class MapMatrixMultiply extends Mapper<LongWritable,Text,Text,Text>{
    private Text OUTKEY = new Text();
    private Text OUTVALUES = new Text();
    private List<String> cacheList = new ArrayList<>();
    /**
     * 初始化方法
     * 会在map方法之前执行一次,且只执行一次
     * 作用:将转置的右侧矩阵放在list中
     */
    @Override
    protected void setup(Mapper<LongWritable, Text, Text, Text>.Context context)
            throws IOException, InterruptedException {
        super.setup(context);
        //通过输入流将全局缓存中的右侧矩阵读入List<String>中
        FileReader fr = new FileReader("matrix2");
        BufferedReader br = new BufferedReader(fr);
        //读取缓存中每一行
        //每一行的格式:行 tab 列_值,列_值,列_值,列_值
        String line = null;
        while((line = br.readLine()) != null){
            cacheList.add(line);
        }
        //关闭输入流
        fr.close();
        br.close();
    }
    /**
     * map实现方法
     * key:行
     * values:行 tab 列_值,列_值,列_值,列_值
     */
    @Override
    protected void map(LongWritable key, Text values, Context context)
            throws IOException, InterruptedException {
        //左侧矩阵
        //行,tab键进行区分,因为每行数据形式:行号 tab 列_值,列_值,列_值,列_值,如:1 1_-1,2_1,3_4,4_3,5_2
        String row_matrix1 = values.toString().split("\t")[0];
        //列_值,数组
        String[] column_value_array_matrix1 = values.toString().split("\t")[1].split(",");
        for (String line : cacheList) {
            //右矩阵行line
            //格式:行 tab 列_值,列_值,列_值,列_值
            String row_matrix2 = line.toString().split("\t")[0];
            String[] column_value_array_matrix2 = line.toString().split("\t")[1].split(",");
            //矩阵2行相乘得到的结果
            int result = 0;
            //遍历左矩阵每一行的每一列
            for (String column_value_matrix1 : column_value_array_matrix1) {
                String column_matrix1 = column_value_matrix1.split("_")[0];
                String column_value1 = column_value_matrix1.split("_")[1];
                //遍历右矩阵每一行的,每一列
                for (String column_value_matrix2 : column_value_array_matrix2) {
                    //判断前缀相同,进行相乘
                    if(column_value_matrix2.startsWith(column_matrix1 + "_")){
                        String column_value2 = column_value_matrix2.split("_")[1];
                        result += Integer.valueOf(column_value1) * Integer.valueOf(column_value2);
                    }
                }
            }
            //result是作为矩阵的值,输出的格式:行  列_值,列_值,列_值,列_值,列_值
            OUTKEY.set(row_matrix1);
            OUTVALUES.set(row_matrix2 + "_" + result);
            context.write(OUTKEY, OUTVALUES);
        }
    }
}
复制代码

4.2reduce阶段

复制代码
import java.io.IOException;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;
public class ReduceMatrixMultiply extends Reducer<Text, Text, Text, Text>{
    private Text OUTKEY = new Text();
    private Text OUTVALUES = new Text();
    @Override
    protected void reduce(Text key, Iterable<Text> values, Context context)
            throws IOException, InterruptedException {
        StringBuilder sb = new StringBuilder();
        for (Text text : values) {
            //text:列_值
            sb.append(text + ",");
        }
        String result = null;
        if(sb.toString().endsWith(",")){
            result = sb.substring(0, sb.length()-1);
        }
        //设置key,value
        OUTKEY.set(key);
        OUTVALUES.set(result);
        context.write(OUTKEY, OUTVALUES);
    }
}
复制代码

4.3测试

复制代码
import java.io.IOException;
import java.net.URI;
import java.net.URISyntaxException;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import hdp.test.matrix.transpose.Transpose;
public class Multiply {
    private static String inPath = "/user/step2_matrixinput/leftmatrix.txt";
    private static String outPath = "/user/matrixout";
    //将step1中输出的右侧转置矩阵作为全局缓存
    private static String cache = "/user/step1_matrixout/part-r-00000";
    //hdfs地址
    private static String hdfs = "hdfs://localhost:9000";
    public int run(){
        try {
            // 创建conf配置
            Configuration conf = new Configuration();
            // 设置hdfs地址
            conf.set("fs.defaultFS", hdfs);
            // 创建job实例
            Job job = Job.getInstance(conf, "step2");
            //添加分布式缓存文件
            job.addCacheArchive(new URI(cache + "#matrix2"));
            //设置job主类
            job.setJarByClass(Transpose.class);
            //设置job的map类与reduce类
            job.setMapperClass(MapMatrixMultiply.class);
            job.setReducerClass(ReduceMatrixMultiply.class);
            //设置mapper输出类型
            job.setMapOutputKeyClass(Text.class);
            job.setMapOutputValueClass(Text.class);
            //设置reduce输出类型
            job.setOutputKeyClass(Text.class);
            job.setOutputValueClass(Text.class);
            
            FileSystem fs = FileSystem.get(conf);
            //设置输入、输出路径
            Path inputPath = new Path(inPath);
            if(fs.exists(inputPath)){
                FileInputFormat.addInputPath(job, inputPath);
            }
            Path outputPath = new Path(outPath);
            fs.delete(outputPath, true);
            FileOutputFormat.setOutputPath(job, outputPath);
            return job.waitForCompletion(true)?1:-1;
        } catch (IOException e) {
            e.printStackTrace();
        } catch (ClassNotFoundException e) {
            e.printStackTrace();
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (URISyntaxException e) {
            e.printStackTrace();
        }
        return -1;
    }
    public static void main(String[] args) {
        int result = -1;
        result = new Multiply().run();
        if(result == 1){
            System.out.println("矩阵相乘执行成功=======");
        }else{
            System.out.println("矩阵相乘执行失败=======");
        }
    }
}
复制代码

以上就是mapreduce实现,矩阵的相乘详细代码

posted @   小码农成长记  阅读(522)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示