数据结构--树(建立、遍历)

目前正准备2020届秋招 算法工程师,复习数据结构!

发现树遍历可以达到O(n)时间复杂度,O(1)空间复杂度(Morris遍历),赶紧学习了一波。并复习了建立树、遍历树的一些基本操作。

#include<iostream>
#include<queue>
#include<cstring>
using namespace std;
struct TreeNode{
    int val;
    TreeNode *left, *right;
    TreeNode(int x): val(x), left(NULL), right(NULL){}
}; 

//初始化树 
TreeNode* init_tree1(TreeNode *root, int val){
    if(root==NULL){
        root = new TreeNode(val);
        return root;
    }
    if(val<root->val){
        root->left = create_tree(root->left, val); 
    }else{
        root->right = create_tree(root->right, val); 
    }
    
    return root;
}

//初始化树 
void init_tree2(TreeNode *&root){
    string data;
    cin>>data;
    if(data=="#"){
        root=NULL;
    }else{
        root = new TreeNode(stoi(data));
        init_tree(root->left);
        init_tree(root->right);
    }
}
//中序遍历,时间复杂度O(n),空间复杂度O(1) 
void MorrisTraversal(TreeNode *root){
    TreeNode *cur = root, *prev = NULL;
    while(cur!=NULL){
        //1. 如果该节点左子树为空,则输出
        if(cur->left==NULL){
            cout<<cur->val<<" ";
            cur = cur->right;   //指向父亲节点 
        }else{
            prev = cur->left;
            while(prev->right!=NULL && prev->right!=cur){
                prev = prev->right;              //找当前节点左子树最右的节点 
            }
            if(prev->right==NULL){
                prev->right = cur;
                cur = cur->left;
            
            }else if(prev->right==cur){
                //说明该节点直接前驱已访问,则访问该节点 
                cout<<cur->val<<" ";
                //下一步指向该节点右子树,继续进行
                cur = cur->right; 
                prev->right = NULL; //恢复为原来节点结构 
            }
        } 
        
    }
    cout<<endl;
}

//中序遍历,时间复杂度O(n),空间复杂度O(n) 
void inorder(TreeNode *root){
    if(root){
        inorder(root->left);
        cout<<root->val<<" "; 
        inorder(root->right);     
    }
}

//层次遍历 
void levelOrder(TreeNode* root){
    queue<TreeNode*> q;
    q.push(root);
    while(!q.empty()){
        int size = q.size();
        for(int i=0;i<size;i++){
            TreeNode *temp = q.front();
            q.pop();
            cout<<temp->val<<" ";
            if(temp->left) q.push(temp->left);
            if(temp->right) q.push(temp->right);
        }
        cout<<endl;
    }
}
int main(){
    TreeNode *root=NULL;
    int s[] = {4,2,6,1,3,5};
    for(int i=0;i<6;i++)
        root = init_tree1(root, s[i]);
    //init_tree2(root);
    levelOrder(root);
    
    cout<<"Morris results: "<<endl;
    MorrisTraversal(root);
    
    cout<<"\nRecursive results:"<<endl;
    inorder(root);
    return 0;
}

 

posted on 2019-07-30 22:28  Magic_chao  阅读(1256)  评论(0编辑  收藏  举报

导航