机器学习实战-决策树
这是本文所用的数据集:
海洋生物数据
不浮出水面是否可以生存 | 是否有脚踝 | 属于鱼类 | |
1 | 是 | 是 | 是 |
2 | 是 | 是 | 是 |
3 | 是 | 否 | 否 |
4 | 否 | 是 | 否 |
5 | 否 | 是 | 否 |
1.思想
决策树是机器学习里面比较常见的一种算法。决策树它是这样工作的:给你一个海洋生物的数据集,那么我怎么来判断这个样本是否属于鱼类?我们常规的是不是首先观察它是否在水面上能够生存,如果不能,那么根据常识我们知道它不是海洋生物。如果能够生存,那么我们接下来又回去观察它是否有脚踝,如果有,我们判断它为海洋生物,如果没有,我们判断它不是海洋生物。 简单的说,上面这个判断的过程就是决策的过程!
这里,我们就有另外一个问题了,我们为何选择首先观察它是否在水面上能够生存,然后再观察它是否有脚踝呢? 我们这篇文章采用ID3算法,那么这就涉及到信息增益的问题了。关于这个问题理解以及公式推导,我们可以参考这个博客。简单的来说,就是我们选择这个特征能够让我们样本集合获得的“纯度提升”越大。
2.伪代码
训练集D={(x1,y1),(x2,y2),...,(xm,ym)}
属性集A={a1,a2,...,ad}
TreeGenerate(D,A)
1.生成节点node
2.if D中所有样本属于同一类别C then
3. 将node标记为类别为C的叶子节点; return
4.else if A=Ø 或者 D中样本在A上取值相同 then
5. 将node标记为叶节点,其类别标记为D中样本数最多的类; return
6.从A中选取最优属性ak
7.for ak中的每一个值aki:
8. 为node生成一个分支;令Di表示D在属性ak上取值为aki的样本子集
9. if Di = Ø then
10. 将分支节点标记为叶节点,类别标记为D中样本最多的类; return
11. else
12. 以TreeGenerate(Di,A\{ak})为分支节点递归创建决策树
3.代码实现
import numpy as np from math import log #创建数据集 def createDataSet(): # data = [[0, 0, 0, 0, 'no'], # 数据集 # [0, 0, 0, 1, 'no'], # [0, 1, 0, 1, 'yes'], # [0, 1, 1, 0, 'yes'], # [0, 0, 0, 0, 'no'], # [1, 0, 0, 0, 'no'], # [1, 0, 0, 1, 'no'], # [1, 1, 1, 1, 'yes'], # [1, 0, 1, 2, 'yes'], # [1, 0, 1, 2, 'yes'], # [2, 0, 1, 2, 'yes'], # [2, 0, 1, 1, 'yes'], # [2, 1, 0, 1, 'yes'], # [2, 1, 0, 2, 'yes'], # [2, 0, 0, 0, 'no']] # labels = ['年龄', '有工作', '有自己的房子', '信贷情况'] data = [[1,1,'yes'], [1,1,'yes'], [1,0,'no'], [0,1,'no'], [0,1,'no']] labels = ['no surfacing','flippers'] return data,labels #计算香农熵 def calEnt(dataSet): labelsCount ={} num = len(dataSet) for featVec in dataSet: currentLabel = featVec[-1] if currentLabel not in labelsCount.keys(): labelsCount[currentLabel]=1 else: labelsCount[currentLabel]+=1 prob = 0.0 for key in labelsCount: p = float(labelsCount[key]) / num prob -= p * log(p,2) return prob #得到相应子集 def splitDataSet(dataSet,axis,value): #axis=n 则表示取第n个特征列,且特征取值为value的子数据集 subDataSet = [] for data in dataSet: if data[axis] == value: reData = data[:axis] reData.extend(data[axis+1:]) subDataSet.append(reData) return subDataSet #得到最佳的划分特征 def getbestFeat(dataSet): num_features = len(dataSet[0]) - 1 # 特征数2 num = len(dataSet) # 样本数 baseInfoGain = 0.0 for feature in range(num_features): #得到该特征有几个属性值 feature_data = [example[feature] for example in dataSet] feature_property = set(feature_data) labelsCount = {} newEntropy = 0.0 for label in feature_data: if label not in labelsCount: labelsCount[label] = 0 labelsCount[label] += 1 for property in feature_property: #属性值 0 1 subSet = splitDataSet(dataSet, feature, property) prob = float(labelsCount[property]) / num newEntropy = newEntropy + prob*calEnt(subSet) InfoGain = calEnt(dataSet) - newEntropy #print('第',feature,'个特征的增益为:',InfoGain) if InfoGain>baseInfoGain: baseInfoGain = InfoGain bestFeat = feature return bestFeat #投票 def majority(classList): classCount = {} for vote in classList: if vote not in classCount: classCount[vote] = 0 classCount[vote] += 1 cla = sorted(classCount.items(),key = lambda x:x[1],reverse=True) return cla[0][0] #创建决策树 def createDecisionTree(dataSet,labels): classList = [example[-1] for example in dataSet] classListSet = set(classList) if len(classListSet) == 1: return classList[0] if len(dataSet[0]) == 1: return majority(classList) bestFeat = getbestFeat(dataSet) print(bestFeat) bestLabel = labels[bestFeat] del(labels[bestFeat]) mytree = {bestLabel:{}} uniqueProperty = {} for property in [example[bestFeat] for example in dataSet]: if property not in uniqueProperty: uniqueProperty[property] = 0 uniqueProperty[property] += 1 for value in uniqueProperty.keys(): subLabels = labels[:] subSet = splitDataSet(dataSet,bestFeat,value) mytree[bestLabel][value] = createDecisionTree(subSet,subLabels) return mytree if __name__ =='__main__': data,labels = createDataSet() result = calEnt(data) print(result) #0.970950594454668 # print(majority([1,0,1,0,0,0])) # getbestFeat(data) print(createDecisionTree(data,labels)) #{'no surfacing': {1: {'flippers': {1: 'yes', 0: 'no'}}, 0: 'no'}}
################################### #获取叶子节点的数目 def getNumLeafs(myTree): numLeafs = 0 firstStr = list(myTree.keys())[0] secondDict = myTree[firstStr] for i in secondDict.keys(): if type(secondDict[i]).__name__ == 'dict': numLeafs += getNumLeafs(secondDict[i]) else: numLeafs += 1 return numLeafs #获取树的层数 def getTreeDepth(myTree): maxDepth = 0 firstStr = next(iter(myTree)) secondDict = myTree[firstStr] for i in secondDict.keys(): if type(secondDict[i]).__name__ == 'dict': thisDepth = 1 + getTreeDepth(secondDict[i]) else: thisDepth = 1 if thisDepth>maxDepth: maxDepth = thisDepth return maxDepth
非学无以广才,非志无以成学! 【Magic_chao】
posted on 2018-12-16 10:58 Magic_chao 阅读(279) 评论(0) 编辑 收藏 举报