[Luogu1040] 加分二叉树

[Luogu1040] 加分二叉树

题目描述

设一个n个节点的二叉树tree的中序遍历为(1,2,3,…,n),其中数字1,2,3,…,n为节点编号。每个节点都有一个分数(均为正整数),记第i个节点的分数为di,tree及它的每个子树都有一个加分,任一棵子树subtree(也包含tree本身)的加分计算方法如下:

subtree的左子树的加分× subtree的右子树的加分+subtree的根的分数。

若某个子树为空,规定其加分为1,叶子的加分就是叶节点本身的分数。不考虑它的空子树。

试求一棵符合中序遍历为(1,2,3,…,n)且加分最高的二叉树tree。要求输出;

(1)tree的最高加分

(2)tree的前序遍历

输入输出格式

输入格式:

第1行:一个整数n(n<30),为节点个数。

第2行:n个用空格隔开的整数,为每个节点的分数(分数<100)。

输出格式:

第1行:一个整数,为最高加分(结果不会超过4,000,000,000)。

第2行:n个用空格隔开的整数,为该树的前序遍历。

输入输出样例

输入样例#1:
5
5 7 1 2 10
输出样例#1:
145
3 1 2 4 5

 

题解:同样是一道DP试炼场的题目啊,我可能难以一下子就做出这道题QAQ

可能因为要输出方案稍稍有点难度,其实也差不了多少

f[i][j]表示中序遍历从i到j的最大得分,ans[i][j]表示i到j的时候这棵子树的根

f[i][j]=max(f[i][k-1]*f[i][k+1]+a[k])( i<=k<=j ,k表示i到j中序遍历的根)

最后再根据记录的答案,dfs来找到答案(可见我的程序)

注意:要预处理i和i+1,作为两个节点的子树时的答案

 1 #include<bits/stdc++.h>
 2 using namespace std;
 3 const int N=50;
 4 int n,a[N],f[N][N],ans[N][N];
 5 void dfs(int l,int r){
 6     if (l==r){
 7         printf("%d ",l); return;
 8     }
 9     if (r==l+1){
10         printf("%d %d ",l,r); return;
11     }
12     printf("%d ",ans[l][r]);
13     dfs(l,ans[l][r]-1); dfs(ans[l][r]+1,r);
14 }
15 int main(){
16     scanf("%d",&n);
17     for (int i=1;i<=n;++i) scanf("%d",&a[i]),f[i][i]=a[i];
18     for (int i=1;i<n;++i){
19         f[i][i+1]=f[i][i]+f[i+1][i+1]; ans[i][i+1]=i;
20     }
21     for (int len=3;len<=n;++len)
22         for (int i=1;i<=n-len+1;++i){
23             int j=i+len-1;
24             for (int k=i+1;k<=j-1;++k){
25                 int res=f[i][k-1]*f[k+1][j]+a[k];
26                 if (res>f[i][j]) ans[i][j]=k,f[i][j]=res;
27             }
28         }
29     printf("%d\n",f[1][n]);
30     dfs(1,n);
31 }
View Code
 
posted @ 2017-10-08 20:09  logiccc  阅读(180)  评论(0编辑  收藏  举报