预热篇2:从RNN到Transformmer
下面是整理的一个思维导图

2010年Mikolov提出了RNN网络,RNN网络存在长距离依赖(梯度消失),计算效率(RNN 难以并行)两个问题
2017年Transformmer网络结构问世,Transformer 网络架构架构由 Ashish Vaswani 等人在 Attention Is All You Need一文中提出,并用于机器翻译任务,和以往网络架构有所区别的是,该网络架构中,编码器和解码器没有采用 RNN 或 CNN 等网络架构,而是采用完全依赖于注意力机制的架构。网络架构如下所示:
Transformmer网络结构解决了传统编码器-解码器模型的挑战,避免信息损失和无法建模输入输出对齐的问题,自动学习注意力权重,捕捉编码器和解码器之间的相关性。在自然语言处理(NLP)、计算机视觉(Computer Vision)、跨模态任务和推荐系统等多个领域中,注意力机制已成为多项任务中的最 先进模型,取得了显著的性能提升。需要关注思维导图中多头注意力机制部分
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 【自荐】一款简洁、开源的在线白板工具 Drawnix
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 无需6万激活码!GitHub神秘组织3小时极速复刻Manus,手把手教你使用OpenManus搭建本