UVA11248_Frequency Hopping
给一个有向网络,求其1,n两点的最大流量是否不小于C,如果小于,是否可以通过修改一条边的容量使得最大流量不小于C?
首先对于给定的网络,我们可以先跑一遍最大流,然后先看流量是否大于C。
然后保存跑完第一次最大流后的残余网络容量情况,然后接下来对于每条割,将分别其容量加C-maxflow,看看能否得到满足条件的流量即可。
召唤代码君:
#include <iostream> #include <cstring> #include <cstdio> #include <vector> #include <algorithm> #define maxn 1110 #define maxm 222220 #define mp(x,y) make_pair(x,y) using namespace std; typedef pair<int,int> pr; int C[maxm]; int to[maxm],next[maxm],c[maxm],first[maxn],edge; int d[maxn],tag[maxn],TAG=222; bool can[maxn]; int Q[maxn],bot,top; int n,m,cmax,s,t,cas=0; vector<pr> ans; void _init() { edge=-1; s=1,t=n; for (int i=1; i<=n; i++) first[i]=-1; } void addedge(int U,int V,int W) { edge++; to[edge]=V,c[edge]=W,next[edge]=first[U],first[U]=edge; edge++; to[edge]=U,c[edge]=0,next[edge]=first[V],first[V]=edge; } bool bfs() { Q[bot=top=1]=t,d[t]=0,tag[t]=++TAG,can[t]=false; while (bot<=top) { int cur=Q[bot++]; for (int i=first[cur]; i!=-1; i=next[i]) if (c[i^1]>0 && tag[to[i]]!=TAG) { d[to[i]]=d[cur]+1,Q[++top]=to[i]; can[to[i]]=false,tag[to[i]]=TAG; if (to[i]==s) return true; } } return false; } int dfs(int cur,int num) { if (cur==t) return num; int tmp=num,k; for (int i=first[cur]; i!=-1; i=next[i]) if (c[i]>0 && tag[to[i]]==TAG && d[to[i]]==d[cur]-1 && !can[to[i]]) { k=dfs(to[i],min(num,c[i])); if (k) num-=k,c[i]-=k,c[i^1]+=k; if (!num) break; } if (num) can[cur]=true; return tmp-num; } int maxflow() { int flow=0; while (bfs()) flow+=dfs(s,cmax); return flow; } int main() { int U,V,W,last; while (scanf("%d%d%d",&n,&m,&cmax) && (n)) { _init(); for (int i=1; i<=m; i++) { scanf("%d%d%d",&U,&V,&W); addedge(U,V,W); } printf("Case %d: ",++cas); last=maxflow(); if (last>=cmax) { puts("possible"); continue; } ans.clear(); for (int i=0; i<=edge; i++) C[i]=c[i]; for (int i=0; i<=edge; i+=2) { if (c[i]+c[i+1]>cmax) continue; c[i]+=cmax-last-c[i]; if (last+maxflow()>=cmax) ans.push_back(mp(to[i+1],to[i])); for (int j=0; j<=edge; j++) c[j]=C[j]; } if (ans.size()==0) puts("not possible"); else { sort(ans.begin(),ans.end()); printf("possible option:(%d,%d)",ans[0].first,ans[0].second); for (unsigned i=1; i<ans.size(); i++) printf(",(%d,%d)",ans[i].first,ans[i].second); printf("\n"); } } return 0; }
如有转载,请注明出处(http://www.cnblogs.com/lochan)