网络流24题 P2774 方格取数问题
思路
问题模型:二分图点权最大独立集
转化模型:网络最小割
不想说太多废话了,所以这是一篇精简的题解 \(\texttt{qwq}\)
因为相邻的点只能选一个,所以考虑把图分成两部分,相邻的两个点一定不在同一边,由此变成二分图
然后找出最小割,用所有的和减去最小割就是答案,又因为最大流=最小割,所以算出最大流即可
代码
/*
Name: 方格取数问题
Author: Loceaner
Date: 24/08/20 21:16
*/
#include <cmath>
#include <queue>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define id (m * (i - 1) + j)
using namespace std;
const int A = 1e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;
inline int read() {
char c = getchar();
int x = 0, f = 1;
for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
return x * f;
}
int dx[5] = { 0, 1, 0, -1, 0 };
int dy[5] = { 0, 0, 1, 0, -1 };
int n, m, s, t, cnt = 1, sum, ans;
struct node { int to, nxt, val; } e[A];
int head[A], dep[A], inq[A], cur[A], r[A], c[A], a[100][100];
inline void add(int from, int to, int val) {
e[++cnt].to = to;
e[cnt].val = val;
e[cnt].nxt = head[from];
head[from] = cnt;
}
inline bool bfs() {
queue <int> Q;
for (int i = 1; i <= n * m + 2; i++)
cur[i] = head[i], inq[i] = 0, dep[i] = inf;
dep[s] = 0, Q.push(s), inq[s] = 1;
while (!Q.empty()) {
int x = Q.front(); Q.pop(), inq[x] = 0;
for (int i = head[x]; i; i = e[i].nxt) {
int to = e[i].to;
if (dep[to] > dep[x] + 1 && e[i].val) {
dep[to] = dep[x] + 1;
if (!inq[to]) Q.push(to), inq[to] = 1;
}
}
}
return dep[t] != inf;
}
int dfs(int x, int flow) {
if (x == t) return flow;
int tmp = 0;
for (int i = cur[x]; i; i = e[i].nxt) {
cur[x] = i;
int to = e[i].to;
if (dep[to] == dep[x] + 1 && e[i].val) {
if (tmp = dfs(to, min(flow, e[i].val))) {
e[i].val -= tmp, e[i ^ 1].val += tmp;
return tmp;
}
}
}
return 0;
}
int main() {
n = read(), m = read();
s = n * m + 1, t = n * m + 2;
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++)
a[i][j] = read(), sum += a[i][j];
for (int i = 1; i <= n; i++)
for (int j = 1; j <= m; j++) {
if (!((i + j) % 2)) add(s, id, a[i][j]), add(id, s, 0);
else add(id, t, a[i][j]), add(t, id, 0);
for (int h = 1; h <= 4; h++) {
int lx = i + dx[h], ly = j + dy[h];
if (lx >= 1 && lx <= n && ly >= 1 && ly <= m)
if ((lx + ly) % 2)
add(id, (lx - 1) * m + ly, inf), add((lx - 1) * m + ly, id, 0);
}
}
int ans = 0, now = 0;
while (bfs()) while (now = dfs(s, inf)) ans += now;
cout << sum - ans << '\n';
return 0;
}
转载不必联系作者,但请声明出处