Forever Young

洛谷 P4132 [BJOI2012]算不出的等式

题意显而易见,不用描述

思路

思路题+数学函数

30pts

按题意暴力枚举,简单粗暴

100pts

代码极短,但是想好久也想不出来= =,果然是思路题

\(p\neq q\)时:

构造函数\(f(x)=\lfloor\frac{xq}{p}\rfloor\)

思考函数\(g(x)=\lfloor x\rfloor\)的几何意义:在坐标系中横坐标为\(x\),纵坐标小于等于\(x\)的整数个数

那么\(f(x)\)就表示:在坐标中横坐标为\(x\),纵坐标小于等于\(\frac{xq}{p}\)的数的个数

那么\(\sum\limits_{k=1}^{\frac{p-1}{2}}f(k)\)就表示所有\(\in[1,\frac{p-1}{2}]\)的整数所形成的的函数图像中所有的整数点,如下图

答案即为右下角三角内的整数点个数

同理令\(t(k)=\lfloor\frac{kp}{q} \rfloor\),则\(\sum\limits_{k=1}^{\frac{q-1}{2}}t(k)\)就表示所有\(\in[1,\frac{q-1}{2}]\)的整数所形成的的函数图像中所有的整数点

容易发现这两部分一起组成了一个矩形,所以我们只需要考虑矩形\(A(0,0),B(\frac{p-1}{2},0),C(\frac{p-1}{2},\frac{q-1}{2}),D(0,\frac{q-1}{2}),\)

所以最后答案就是\(\frac{(p-1)}{2}\times\frac{(q-1)}{2}\)

\(p=q\)时:

\[\sum\limits_{k=1}^\frac{p-1}{2} \lfloor\frac {kq}{p} \rfloor+\sum\limits_{k=1}^\frac{q-1}{2} \lfloor\frac {kp}{q}\rfloor=2\times\sum\limits_{k=1}^{\frac{p -1}{2}}k=2\times\frac{(\frac{p-1}{2}+1)\times \frac{p-1}{2}}{2}=\frac{(p-1)(p+1)}{4} \]

代码

30pts

/*
Author:Loceaner
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;

const int A = 5e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;

inline int read() {
  char c = getchar(); int x = 0, f = 1;
  for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
  for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
  return x * f;
}

int p, q, ans;

signed main() {
  p = read(), q = read();
  int up1 = (p - 1) / 2, up2 = (q - 1) / 2;
  for (int k = 1; k <= up1; k++) 
    ans += (int)k * q / p;
  for (int k = 1; k <= up2; k++) 
    ans += (int)k * p / q;
  cout << ans << '\n';
  return 0;
}

100pts

/*
Author:Loceaner
*/
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
#define int long long
using namespace std;

const int A = 1e6 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;

inline int read() {
	char c = getchar();
	int x = 0, f = 1;
	for ( ; !isdigit(c); c = getchar()) if (c == '-') f = -1;
	for ( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
	return x * f;
}

int p, q, ans;

signed main() {
	p = read(), q = read();
	if (p == q) return cout << (p - 1) * (p + 1) / 4 << '\n', 0;
	cout << (p - 1) * (q - 1) / 4 << '\n';
	return 0;
}
posted @ 2020-07-07 12:00  Loceaner  阅读(104)  评论(0编辑  收藏  举报