Forever Young

洛谷 P6082 [JSOI2015]salesman

题意

给定一棵\(n\)个点的树,有点权,你从\(1\)号点开始一次旅行,最后回到\(1\)号点。每到达一个点,你就能获得等于该点点权的收益, 但每个点都有进入该点的次数限制,且每个点的收益只能获得一 次,求最大收益。

思路

树形\(\texttt{DP}\) + 优先队列

比较容易看出来这是一道树形\(\texttt{DP}\)

要注意的是最大停留次数为输入次数-1,因为还要从子树返回到这一个节点

然后下面考虑怎么\(\texttt{DP}\)

我们用\(f[i]\)表示以从\(i\)出发,访问以\(i\)为根的子树,并且最后能回到\(i\)的最大收益

显然我们要选较大且非负的数,因为去大点权的节点肯定比去小点权的点权更优,去非负点权的节点肯定比去负点权的节点更优,而且因为一个节点可以去多次且只记一次点权,所以肯定能够用完次数,因此我们每次在小于等于停留次数的前提下取完正儿子即可,这样就可以保证最大,所以\(f[i]\)就等于\(i\)所有正儿子的点权之和(前提是小于等于最大停留次数),最后的答案就是\(f[1]\)

下面来考虑解是否唯一的问题,解不唯一有两种情况:

  1. \(i\)的子树中有权值为\(0\)的点。因为选不选权值都不变,所以可选可不选,因此解就不唯一了
  2. 如果\(i\)在遍历过程中当父亲节点剩余的停留次数为\(1\)时,可选的最大值有两个及两个以上儿子节点,则解不唯一

所以在过程中判断一下就好了

代码

/*
Author:loceaner
*/
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;

const int A = 5e5 + 11;
const int B = 1e6 + 11;
const int mod = 1e9 + 7;
const int inf = 0x3f3f3f3f;

inline int read() {
	char c = getchar(); int x = 0, f = 1;
	for( ; !isdigit(c); c = getchar()) if(c == '-') f = -1;
	for( ; isdigit(c); c = getchar()) x = x * 10 + (c ^ 48);
	return x * f;
}

int n, cnt, head[A], ti[A], a[A], f[A], flag[A];
struct node { int to, nxt; } e[A];

inline void add(int from, int to) {
	e[++cnt].to = to;
	e[cnt].nxt = head[from];
	head[from] = cnt;
}

struct Node {
	int val, id;
	Node() { val = id = 0; }
	Node(int a, int b) { val = a; id = b; }
	bool operator < (const Node &A) const {
		return val < A.val;
	}
};

void dfs(int x, int fa) {
	priority_queue <Node> q;
	f[x] = a[x];
	for (int i = head[x]; i; i = e[i].nxt) {
		int to = e[i].to;
		if (to == fa) continue;
		dfs(to, x);
		q.push(Node(f[to], flag[to]));
	}
	int vis = 0, last;
	while (++vis <= ti[x] && !q.empty()) {
		Node tmp = q.top(); q.pop();
		if (tmp.val < 0) break;
		if (tmp.val == 0) { flag[x] = 1; break; }
		f[x] += tmp.val;
		flag[x] |= tmp.id;
		last = tmp.val;
	}
	if (!q.empty()) 
		if (q.top().val == last) flag[x] = 1;
}

int main() {
	n = read();
	ti[1] = inf; //根节点可以访问无限次 
	for (int i = 2; i <= n; i++) a[i] = read();
	for (int i = 2; i <= n; i++) ti[i] = read() - 1;
	//最多遍历ti[i]-1次因为还要从子树回到这个节点 
	for (int i = 1, x, y; i < n; i++) {
		x = read(), y = read();
		add(x, y), add(y, x);
	}
	dfs(1, 0);
	cout << f[1] << '\n';
	if (flag[1]) cout << "solution is not unique\n";
	else cout << "solution is unique\n";
	return 0;
}
posted @ 2020-06-14 21:49  Loceaner  阅读(160)  评论(2编辑  收藏  举报