克鲁斯卡尔重构树总结

作用:通过kruskal,我们可以求出两点之间经过边权的最大值最小可以是多少(即瓶颈路)。
如果是点权,则将边权设为两点的最大值。
求出最小生成树后,这个值就是树上路径最值。

但是,有时这样还不够。
我们可以这样建树:连接x,y时,新建点u,权值为边权,并将x,y的所属根的父节点都设为u。
用并查集维护这一过程。

这样,可以得到一棵二叉树,称为克鲁斯卡尔重构树。
此时,x到y的这个值就是树上x,y的lca的点权。
同时,我们可以通过倍增,把从x出发,经过不超过y的边(点)权,能到达的点表示为一棵子树,从而表示为区间。

代码:

int getv(int x)
{
	if(f[x]==x)
		return x;
	f[x]=getv(f[x]);
	return f[x];
}
int gettree1(int n,int m,vector<int> ve[400010])
{
	for(int i=0;i<n;i++)
		f[i]=i;
	for(int i=0;i<m;i++)
	{
		px[i].x=x[i];px[i].y=y[i];
		px[i].z=max(x[i],y[i]);
	}
	qsort(px,m,sizeof(SPx),cmp1);
	for(int i=0,j=n;i<m;i++)
	{
		int tx=getv(px[i].x),ty=getv(px[i].y);
		if(tx==ty)
			continue;
		f[tx]=f[ty]=j;f1[tx]=f1[ty]=j;
		f[j]=j;z1[j]=px[i].z;
		ve[j].push_back(tx);
		ve[j++].push_back(ty);
	}
	return getv(0);
}
posted @ 2019-10-13 15:14  lnzwz  阅读(1140)  评论(0编辑  收藏  举报