初识最大流

Dinic算法:

while(能够分层)

{

  分层;

  dfs增广;

}

分层:即源点为0层,能一步到达的点为第一层,二步到达的点为第二层......(边容量为0即为不可达)。

dfs增广:按照层次从源点搜索一条可行流到汇点,减去可行流得到残余网络,然后回溯,接着在残余网络上寻找可行流,直到回溯到0层不能找到可行流。

残余网络:在图上减去可行流,相应地增加反向流,就成残余网络了。反向流即有取消流的作用,和匈牙利算法的将原已经建立的匹配回撤操作类似。

const int MAX_N = 100;  
const int MAX_M = 10000;  
const int INF = 1000000000;  
struct edge {
    int v, c, next;  //v是右端点,c是容量 
} e[MAX_M];
int p[MAX_N], eid;
void init() {
    memset(p, -1, sizeof(p));
    eid = 0;
}
void insert(int u, int v, int c) {  
    e[eid].v = v;
    e[eid].c = c;
    e[eid].next = p[u];
    p[u] = eid++;
}
void addedge(int u, int v, int c) {  
    insert(u, v, c);
    insert(v, u, 0);  
}
int S, T;  
int d[MAX_N];  
bool CountLayer() {  //分层 
    memset(d, -1, sizeof(d));
    queue<int> q;
    q.push(S);
    d[S] = 0;
    while (!q.empty()) {
        int u = q.front();
        q.pop();
        for (int i = p[u]; i != -1; i = e[i].next) {
            int v = e[i].v;
            if (e[i].c > 0 && d[v] == -1) {
                q.push(v);
                d[v] = d[u] + 1;
            }
        }
    }
    return (d[T] != -1); //源点是否能到达汇点,即分层是否成功 
}

int dfs(int u, int flow) {  //flow为前面层次流入u点可行流最大流量 ,源点即为正无穷 
    if (u == T) {
        return flow;
    }
    int res = 0;
    for (int i = p[u]; i != -1; i = e[i].next) {
        int v = e[i].v;
        if (e[i].c > 0 && d[u] + 1 == d[v]) {
            int tmp = dfs(v, min(flow, e[i].c));  
            flow -= tmp;
            e[i].c -= tmp;
            res += tmp;
            e[i ^ 1].c += tmp;  
            if (flow == 0) {  
                break;
            }
        }
    }
    if (res == 0) {  //不能从该点搜索到可行流了,标志为-1 
        d[u] = -1;
    }
    return res;
}

int maxflow() {  
    int res = 0;
    while (CountLayer()) {
        res += dfs(S, INF);  
    }
    return res;
}

 

posted @ 2018-04-30 16:48  hzhuan  阅读(171)  评论(0编辑  收藏  举报