hdu1028(母函数)

Problem Description
"Well, it seems the first problem is too easy. I will let you know how foolish you are later." feng5166 says.

"The second problem is, given an positive integer N, we define an equation like this:
  N=a[1]+a[2]+a[3]+...+a[m];
  a[i]>0,1<=m<=N;
My question is how many different equations you can find for a given N.
For example, assume N is 4, we can find:
  4 = 4;
  4 = 3 + 1;
  4 = 2 + 2;
  4 = 2 + 1 + 1;
  4 = 1 + 1 + 1 + 1;
so the result is 5 when N is 4. Note that "4 = 3 + 1" and "4 = 1 + 3" is the same in this problem. Now, you do it!"
 

 

Input
The input contains several test cases. Each test case contains a positive integer N(1<=N<=120) which is mentioned above. The input is terminated by the end of file.
 

 

Output
For each test case, you have to output a line contains an integer P which indicate the different equations you have found.
 

 

Sample Input
4 10 20
 

 

Sample Output
5 42 627
 
题意即给你一个整数,问你有多少种拆分方法。
 
可以先想一想搜索该怎么做,我感觉下面的方法本质还是搜索
 
先说一下普通的母函数
G(x)=(1+x1+x2+...+xn)(1+x2+x4...+xn*2)...(1+x1*i+x2*i...+xn*i)。。。(对应该题)
在这里不要用普通的函数的思想来理解,这里的x表示一个单位量,指数即这个单位量的个数,将这个式子的括号消去,即一个个乘起来,最后得到每一项的系数就是对应的方案数(如6x5,就表示组成5的有6种)。为什么呢?再看看。这里每一个括号代表着一个东西,括号里面就代表着对这个括号的选取,如第一个括号,1(x0)代表不选,x1表示选一个该物品得到的量,x2表示选2个该物品...(有没有觉得)
 
再分析本题,答案即xN的系数。第一个括号表示对数字1的选取,第二个括号对数字2的选取。。。
代码:
 1 #include<stdio.h>
 2 #include<stdlib.h>
 3 #include<iostream>
 4 
 5 using namespace std; 
 6 
 7 long long a[125]={0},b[125];  //存储对应指数的系数就行了
 8 int main()
 9 {
10     for(int i=0;i<=121;i++)
11         a[i]=1;
12     for(int i=2;i<=121;i++)
13         {
14         for(int t=0;t<=121;t++)   //注意
15             b[t]=a[t];
16             
17         for(int j=1;j*i<=121;j++)
18         for(int k=0;j*i+k<=121;k++)
19             a[j*i+k]+=b[k];
20         }
21     int n;
22     while(~scanf("%d",&n))
23     {
24         printf("%lld\n",a[n]);
25     }
26     return 0;
27 } 

 

posted @ 2018-01-16 11:26  hzhuan  阅读(187)  评论(0编辑  收藏  举报