为了能到远方,脚下的每一步都不能少.|

lmyyyy

园龄:2年8个月粉丝:7关注:10

10月13日总结

.NET高性能开发-位图索引(一)

首先来假设这样一个业务场景,大家对于飞机票应该不陌生,大家在购买机票时,首先是选择您期望的起抵城市和时间,然后选择舱等(公务舱、经济舱),点击查询以后就会出现航班列表,随意的点击一个航班,可以发现有非常多组价格,因为机票和火车票不一样,它的权益、规则更加的复杂,比如有机票中有针对年龄段的优惠票,有针对学生的专享票,有不同的免托运行李额、餐食、有不同的退改签规则,甚至买机票还能送茅台返现等等。

在中国有几十个航司、几百个机场、几千条航线、几万个航班,每个航班有几十上百种产品类型,这是一天的数据,机票可以提前一年购买,总计应该有数十亿,而且它们在实时的变动,没有任何一种数据库能解决这样量级下高并发进行实时搜索的问题。

业内的解决方案都是加载数据到内存进行计算,但是内存计算也是有挑战的,如何在短短的几十毫秒内处理数十亿数据将搜索结果呈现在客户面前呢?

其中有很多可以聊的地方,今天主要聊大规模实时搜索引擎技术的一个小的优化点;通过这个简单的场景,看如何使用.NET构建内存位图索引优化搜索引擎计算速度。

声明:为简化知识和方便理解,本文场景与解决方案均为虚构,如有雷同纯属巧合。

由于篇幅问题,本系列文章一共分为四篇:

介绍什么是位图索引,如何在.NET中构建和使用位图索引
位图索引的性能,.NET BCL库源码解析,如何通过SIMD加速位图索引的计算
CPU SIMD就走到尽头了吗?下一步方向是什么?
构建高效的Bitmap内存索引库并实现可观测性(待定,现在没有那么多时间整理)

什么是位图索引#

要回答这样一个问题,我们首先来假设一个案例,我们将航班规则抽象成下面的record类型,然后有如下这样一些航班的规则数据被加载到了内存中:

///


/// 舱等
///

public enum CabinClass {
// 头等舱
F,
// 经济舱
Y
}

///


/// 航班规则
///

/// 航司
/// 舱等
/// 起飞机场
/// 抵达机场
/// 起飞时间
public record FlightRule(string Airline, CabinClass Class, string Origin, string Destination, string FlightNo, DateTime DepartureTime);

var flightRules = new FlightRule[]
{
new ("A6", CabinClass.F, "PEK", "SHA", "A61234", DateTime.Parse("2023-10-11 08:00:00")),
new ("CA", CabinClass.Y, "SHA", "PEK", "CA1234", DateTime.Parse("2023-10-13 08:00:00")),
new ("CA", CabinClass.Y, "SHA", "PEK", "CA1234", DateTime.Parse("2023-10-14 08:00:00")),
new ("CA", CabinClass.Y, "SHA", "PEK", "CA1234", DateTime.Parse("2023-10-15 08:00:00")),
new ("CA", CabinClass.F, "SHA", "PEK", "CA1234", DateTime.Parse("2023-10-15 08:00:00")),
new ("MU", CabinClass.F, "PEK", "CSX", "MU1234", DateTime.Parse("2023-10-16 08:00:00")),
new ("9C", CabinClass.Y, "PEK", "CSX", "9C1234", DateTime.Parse("2023-10-17 08:00:00")),
};

本文作者:lmyyyy

本文链接:https://www.cnblogs.com/lmyy/p/17767109.html

版权声明:本作品采用知识共享署名-非商业性使用-禁止演绎 2.5 中国大陆许可协议进行许可。

posted @   lmyyyy  阅读(12)  评论(0编辑  收藏  举报
点击右上角即可分享
微信分享提示
评论
收藏
关注
推荐
深色
回顶
收起