计算字符串相似度算法——Levenshtein

0.这个算法实现起来很简单

1.百度百科介绍:

Levenshtein 距离,又称编辑距离,指的是两个字符串之间,由一个转换成另一个所需的最少编辑操作次数。

许可的编辑操作包括将一个字符替换成另一个字符,插入一个字符,删除一个字符。

编辑距离的算法是首先由俄国科学家Levenshtein提出的,故又叫Levenshtein Distance。

2.用途

模糊查询

3.实现过程

a.首先是有两个字符串,这里写一个简单的 abc和abe

b.将字符串想象成下面的结构。

A处 是一个标记,为了方便讲解,不是这个表的内容。

 

  abc a b c
abe 0 1 2 3
a 1 A处    
b 2      
e 3      

c.来计算A处 出得值

它的值取决于:左边的1、上边的1、左上角的0.

按照Levenshtein distance的意思:

上面的值和左面的值都要求加1,这样得到1+1=2。

A处 由于是两个a相同,左上角的值加0.这样得到0+0=0。

这是后有三个值,左边的计算后为2,上边的计算后为2,左上角的计算为0,所以A处 取他们里面最小的0.

d.于是表成为下面的样子

  abc a b c
abe 0 1 2 3
a 1 0    
b 2 B处    
e 3      

在B处 会同样得到三个值,左边计算后为3,上边计算后为1,在B处 由于对应的字符为a、b,不相等,所以左上角应该在当前值的基础上加1,这样得到1+1=2,在(3,1,2)中选出最小的为B处的值。

e.于是表就更新了

 

  abc a b c
abe 0 1 2 3
a 1 0    
b 2 1    
e 3 C处    

C处 计算后:上面的值为2,左边的值为4,左上角的:a和e不相同,所以加1,即2+1,左上角的为3。

在(2,4,3)中取最小的为C处 的值。

f.于是依次推得到

    a b c
  0 1 2 3
a 1 A处 0 D处 1 G处 2
b 2 B处 1 E处 0 H处 1
e 3 C处 2 F处 1 I处 1

 

I处: 表示abc 和abe 有1个需要编辑的操作。这个是需要计算出来的。

同时,也获得一些额外的信息。

A处: 表示a      和a      需要有0个操作。字符串一样

B处: 表示ab    和a      需要有1个操作。

C处: 表示abe  和a      需要有2个操作。

D处: 表示a      和ab    需要有1个操作。

E处: 表示ab    和ab    需要有0个操作。字符串一样

F处: 表示abe  和ab    需要有1个操作。

G处: 表示a      和abc   需要有2个操作。

H处: 表示ab    和abc    需要有1个操作。

I处: 表示abe   和abc    需要有1个操作。

g.计算相似度

先取两个字符串长度的最大值maxLen,用1-(需要操作数除maxLen),得到相似度。

例如abc 和abe 一个操作,长度为3,所以相似度为1/3=0.333。

posted on 2015-04-14 00:57  罗马圣剑  阅读(149)  评论(0编辑  收藏  举报

导航