LGP7890题解

前置芝士的光速幂技巧。

本题解不是正解,和正解唯一的差别在于对幂的处理。

我们能够发现有:

\[F(n,m,k)=\frac 1 n \binom {n+m-1} m \]

证明见这里

然后我们开始推柿子:

\[\prod_{i=1}^n\prod_{j=1}^m\prod_{x=0}^k(\frac 1 i \binom {i+j-1} j )^{[\gcd(i,j)=1]} \]

\[(\prod_{i=1}^n\prod_{j=1}^m(\frac {(i+j-1)!} {i!j!})^{[\gcd(i,j)=1]})^{k+1} \]

此时我们可以把答案拆成两部分:

\[\prod_{i=1}^n\prod_{j=1}^m((i+j-1)!)^{[\gcd(i,j)=1]} \]

\[\prod_{i=1}^n\prod_{j=1}^m(i!j!)^{[\gcd(i,j)=1]} \]

1

\[\prod_{i=1}^n\prod_{j=1}^m((i+j-1)!)^{\sum_{d|i,d|j}\mu(d)} \]

\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{j=1}^{\lfloor \frac m d \rfloor} (di+dj-1)!^{\mu(d)} \]

\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{j=1}^{\lfloor \frac m d \rfloor} \frac {(d(i+j))!^{\mu(d)}} {(d(i+j))^{\mu(d)}} \]

1.1

\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{j=1}^{\lfloor \frac m d \rfloor} {(d(i+j))!^{\mu(d)}} \]

真正的毒瘤。

\[\prod_{d=1}^n\prod_{k=1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}}(dk)!^{num_{{\lfloor \frac n d \rfloor},{\lfloor \frac m d \rfloor}}[k]\mu(d)} \]

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac n d \rfloor}(dk)!^{(k-1)\mu(d)} \times\prod_{k={\lfloor \frac n d \rfloor}+1}^{{\lfloor \frac m d \rfloor}} (dk)!^{{\lfloor \frac n d \rfloor}\mu(d)} \times \prod_{k={\lfloor \frac m d \rfloor}+1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}-k+1)\mu(d)} \]

1.1.1

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{(k-1)\mu(d)} \]

\[\prod_{d=1}^nd!^{\sum_{k|d} k \mu(\frac d k)} \div \prod_{d=1}^n d!^{\sum_{k|d}\mu(\frac d k)} \]

\[\prod_{d=1}^nd!^{\varphi(d)} \]

有趣的一点是,这玩意儿和 \(\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{k\mu(d)}\) 是一个东西。以及这玩意儿和后面的 \(1.1.3.1\) 是一样的,所以可以不用推。。。

1.1.2

\[\prod_{d=1}^n\prod_{k={\lfloor \frac n d \rfloor}+1}^{\lfloor \frac m d \rfloor} (dk)^{{\lfloor \frac n d \rfloor}\mu(d)} \]

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)^{{\lfloor \frac n d \rfloor}\mu(d)} \div \prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{{\lfloor \frac n d \rfloor}\mu(d)} \]

右边:

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{\mu(d){\lfloor \frac n d \rfloor}} \]

\[\prod_{d=1}^n(\prod_{k=1}^{\lfloor \frac n d \rfloor} (dk)!^{\mu(d)})^{\lfloor \frac n d \rfloor} \]

设:

\[f_1(d,n)=\prod_{k=1}^n(dk)!^{\mu(d)} \]

可以发现:

\[f_1(d,n)=f_1(d,n-1) \times (dn)!^{\mu(d)} \]

\((dn)!^{mu(d)}\) 用光速幂搞定,(这里的 \(dn\) 一定不大于数据范围)就可以 \(O(n\log n)\) 递推 \(f_1\) 了。

这一部分最终能够推得:

\[\prod_{d=1}^n f_1(d,{\lfloor \frac n d \rfloor})^{\lfloor \frac n d \rfloor} \]

\(f_1\) 在第二维度上做前缀积即可整除分块带走。

左边的和右边的是一样的,就不再论述了。

1.1.3

\[\prod_{d=1}^n\prod_{k={\lfloor \frac m d \rfloor}+1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}-k+1)\mu(d)} \]

它 是 毒 瘤

首先拆一下:

\[\prod_{d=1}^n((\prod_{k=1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor})\mu(d)} \div \prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor})\mu(d)}) \]

\[\div (\prod_{k=1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{k\mu(d)} \div \prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{k\mu(d)}) \]

\[\times (\prod_{k=1}^{{\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor}} (dk)!^{\mu(d)} \div \prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{\mu(d)})) \]

后面四个好像容易一些,先搞后面四个。

1.1.3.1

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac m d \rfloor}(dk)!^{k\mu(d)} \]

设:

\[f_2(d,n)=\prod_{k=1}^n(dk)!^{k\mu(d)} \]

明显有:

\[f_2(d,n)=f_2(d,n-1) \times (dn)!^{n\mu(d)} \]

\(f_1\) 一样即可以 \(O(n\log n)\) 处理这玩意儿。

1.1.3.2

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{\mu(d)} \]

你发现这玩意儿就是 \(f_1\),所以可以直接草了。

1.1.3.3

\[\prod_{d=1}^n\prod_{k=1}^{\lfloor \frac m d \rfloor} (dk)!^{({\lfloor \frac n d \rfloor}+{\lfloor \frac m d \rfloor})\mu(d)} \]

这玩意儿好像就只是 \(f_1\) 加上了一个幂?用一个光速幂就可以带走了。

1.2

\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{j=1}^{\lfloor \frac m d \rfloor} {(d(i+j))^{\mu(d)}} \]

这一部分几乎和 \(1.1\) 是相同的,所以不再论述,将 \((dk)!\) 换成 \((dk)\) 即可。

2

\[\prod_{i=1}^n\prod_{j=1}^m(i!j!)^{\sum_{d|i,d|j} \mu(d)} \]

其实这一部分明显比前面简单得多,以至于我前面刚写完就以为整个题解写完了(

\[\prod_{d=1}^n\prod_{i=1}^{\lfloor \frac n d \rfloor}\prod_{i=1}^{\lfloor \frac m d \rfloor}(di)!^{\mu(d)}(dj)!^{\mu(d)} \]

\[\prod_{d=1}^n(\prod_{i=1}^{\lfloor \frac n d \rfloor}(di)!^{\mu(d){\lfloor \frac m d \rfloor}} \times \prod_{i=1}^{\lfloor \frac m d \rfloor}(dj)!^{\mu(d){\lfloor \frac n d \rfloor}}) \]

\[\prod_{d=1}^n(\prod_{i=1}^{\lfloor \frac n d \rfloor} (di)!^{\mu(d)})^{\lfloor \frac m d \rfloor} \times (\prod_{d=1}^n \prod_{j=1}^{\lfloor \frac m d \rfloor} (dj)!^{\mu(d)})^{\lfloor \frac n d \rfloor} \]

我们发现这玩意儿就是 \(f_3\),直接光速幂即可。

虽然复杂度是 \(O(n^{\frac 5 4}\log n+T\sqrt n)\) 的,但是常数巨大。。。

以及,光速幂空间过大,所以可能需要 \(\rm vector\) 来实现,以及离线卡常。

来想想需要对哪些东西预处理光速幂

\(f_1\)\(1.2\) 中的 “\(f_1\)”。长度分别为 \(O(n\log n)\)\(O(n\log n)\)

对二者同时光速幂。注意光速幂离线后一共有 \(O(n\log n)\) 个底数,对其分块后可以卡进 cache,对上面的二者同步预处理光速幂即可。

posted @ 2022-01-11 14:29  Prean  阅读(28)  评论(0编辑  收藏  举报
var canShowAdsense=function(){return !!0};