LGP7580题解
设:
\[g(x)=\prod_{i=1}^{k_i}\binom {m} {c_{d,i}+m}
\]
那么很明显有:
\[f= a * g
\]
再看一眼 \(g\),我们发现 \(g\) 是积性函数。
使用P5495的办法即可做到 \(O(m+n\log \log n)\),轻松通过此题。
#include<cstdio>
const int M=1e7+5,mod=998244353;
typedef unsigned uint;
int n,m,top,f[24],g[M],pri[M],C[M];uint ans,b[M],a[M];
int fac[M],ifac[M];bool zhi[M];
uint seed;
inline int Add(const int&a,const int&b){
return a+b>=mod?a+b-mod:a+b;
}
inline uint randomdigit(){
seed^=seed<<13;
seed^=seed>>17;
seed^=seed<<5;
return seed;
}
signed main(){
register int i,j,x;
scanf("%d%d%u",&n,&m,&seed);
a[1]=randomdigit()%mod;
fac[0]=ifac[0]=fac[1]=ifac[1]=1;
fac[2]=2;ifac[2]=499122177;
for(i=3;i<=m+24;++i){
fac[i]=1ll*fac[i-1]*i%mod;
ifac[i]=1ll*(mod-mod/i)*ifac[mod%i]%mod;
}
for(i=1;i<=m+24;++i)ifac[i]=1ll*ifac[i]*ifac[i-1]%mod;
for(i=0;i<24;++i){
f[i]=1ll*ifac[i]*ifac[m]%mod*fac[i+m]%mod;
}
for(i=2;i<=n;++i){
a[i]=randomdigit()%mod;
if(!zhi[i])pri[++top]=i;
for(j=1;j<=top&&(x=i*pri[j])<=n;++j){
zhi[x]=1;if(!(i%pri[j]))break;
}
}
for(i=1;i<=top;++i){
for(j=n/pri[i];j;--j){
for(long long x,k=pri[i],cnt=1;(x=j*k)<=n;++cnt,k*=pri[i]){
a[x]=Add(a[x],1ll*a[j]*f[cnt]%mod);
}
}
}
for(i=1;i<=n;++i)ans^=a[i];
printf("%u",ans);
}