dijkstar 求解次短路
#include <cstdio> #include <cstring> #include <queue> #include <algorithm> #define MAXN (5000 + 10) #define INF (5000*5000*2) using namespace std; struct edge{ int to, cost; edge(int tv = 0, int tc = 0): to(tv), cost(tc){} }; typedef pair<int ,int> P; int N, R; vector<edge> graph[MAXN]; int dist[MAXN]; //最短距离 int dist2[MAXN]; //次短距离 void solve(){ fill(dist, dist+N, INF); fill(dist2, dist2+N, INF); //从小到大的优先队列 //使用pair而不用edge结构体 //是因为这样我们不需要重载运算符 //pair是以first为主关键字进行排序 priority_queue<P, vector<P>, greater<P> > Q; //初始化源点信息 dist[0] = 0; Q.push(P(0, 0)); //同时求解最短路和次短路 while(!Q.empty()){ P p = Q.top(); Q.pop(); //first为s->to的距离,second为edge结构体的to int v = p.second, d = p.first; //当取出的值不是当前最短距离或次短距离,就舍弃他 if(dist2[v] < d) continue; for(unsigned i = 0; i < graph[v].size(); i++){ edge &e = graph[v][i]; int d2 = d + e.cost; if(dist[e.to] > d2){ swap(dist[e.to], d2); Q.push(P(dist[e.to], e.to)); } if(dist2[e.to] > d2 && dist[v] < d2){ dist2[e.to] = d2; Q.push(P(dist2[e.to], e.to)); } } } printf("%d\n", dist2[N-1]); } int main(){ int A, B, D; scanf("%d%d", &N, &R); for(int i = 0; i < R; i++){ scanf("%d%d%d", &A, &B, &D); graph[A-1].push_back(edge(B-1, D)); graph[B-1].push_back(edge(A-1, D)); } solve(); return 0; }
即把次短路与最短路一起放进优先队列中去更新
然后搞一波满足的关系式即可求解次短路
对,没有毛病