SparkStreaming

SparkStreaming案例

案例1-WordCount

yum install -y nc

https://github.com/apache/spark/blob/master/examples/src/main/scala/org/apache/spark/examples/streaming/NetworkWordCount.scala

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.{SparkConf, SparkContext, streaming}
import org.apache.spark.streaming.{Seconds, StreamingContext}

/**
 * Author itcast
 * Desc 使用SparkStreaming接收node1:9999的数据并做WordCount
 */
object WordCount01 {
  def main(args: Array[String]): Unit = {
    //TODO 0.准备环境
    val conf: SparkConf = new SparkConf().setAppName("spark").setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("WARN")
    //the time interval at which streaming data will be divided into batches
    val ssc: StreamingContext = new StreamingContext(sc,Seconds(5))//每隔5s划分一个批次

    //TODO 1.加载数据
    val lines: ReceiverInputDStream[String] = ssc.socketTextStream("node1",9999)

    //TODO 2.处理数据
    val resultDS: DStream[(String, Int)] = lines.flatMap(_.split(" "))
      .map((_, 1))
      .reduceByKey(_ + _)

    //TODO 3.输出结果
    resultDS.print()

    //TODO 4.启动并等待结束
    ssc.start()
    ssc.awaitTermination()//注意:流式应用程序启动之后需要一直运行等待手动停止/等待数据到来

    //TODO 5.关闭资源
    ssc.stop(stopSparkContext = true, stopGracefully = true)//优雅关闭
  }
}

案例2-状态管理

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
 * Author itcast
 * Desc 使用SparkStreaming接收node1:9999的数据并做WordCount+实现状态管理:
 * 如输入spark hadoop 得到(spark,1),(hadoop,1)
 * 再下一个批次在输入 spark spark,得到(spark,3)
 */
object WordCount02 {
  def main(args: Array[String]): Unit = {
    //TODO 0.准备环境
    val conf: SparkConf = new SparkConf().setAppName("spark").setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("WARN")
    //the time interval at which streaming data will be divided into batches
    val ssc: StreamingContext = new StreamingContext(sc, Seconds(5)) //每隔5s划分一个批次

    //The checkpoint directory has not been set. Please set it by StreamingContext.checkpoint().
    //注意:state存在checkpoint中
    ssc.checkpoint("./ckp")

    //TODO 1.加载数据
    val lines: ReceiverInputDStream[String] = ssc.socketTextStream("node1", 9999)

    //TODO 2.处理数据
    //定义一个函数用来处理状态:把当前数据和历史状态进行累加
    //currentValues:表示该key(如:spark)的当前批次的值,如:[1,1]
    //historyValue:表示该key(如:spark)的历史值,第一次是0,后面就是之前的累加值如1
    val updateFunc = (currentValues: Seq[Int], historyValue: Option[Int]) => {
      if (currentValues.size > 0) {
        val currentResult: Int = currentValues.sum + historyValue.getOrElse(0)
        Some(currentResult)
      } else {
        historyValue
      }
    }

    val resultDS: DStream[(String, Int)] = lines.flatMap(_.split(" "))
      .map((_, 1))
      //.reduceByKey(_ + _)
      // updateFunc: (Seq[V], Option[S]) => Option[S]
      .updateStateByKey(updateFunc)

    //TODO 3.输出结果
    resultDS.print()

    //TODO 4.启动并等待结束
    ssc.start()
    ssc.awaitTermination() //注意:流式应用程序启动之后需要一直运行等待手动停止/等待数据到来

    //TODO 5.关闭资源
    ssc.stop(stopSparkContext = true, stopGracefully = true) //优雅关闭
  }
}

案例3-状态恢复-扩展

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
 * Author itcast
 * Desc 使用SparkStreaming接收node1:9999的数据并做WordCount+实现状态管理+状态恢复
 * 如输入spark hadoop 得到(spark,1),(hadoop,1)
 * 再下一个批次在输入 spark spark,得到(spark,3)
 */
object WordCount03 {
  def creatingFunc():StreamingContext ={
    //TODO 0.准备环境
    val conf: SparkConf = new SparkConf().setAppName("spark").setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("WARN")
    //the time interval at which streaming data will be divided into batches
    val ssc: StreamingContext = new StreamingContext(sc, Seconds(5)) //每隔5s划分一个批次

    //The checkpoint directory has not been set. Please set it by StreamingContext.checkpoint().
    //注意:state存在checkpoint中
    ssc.checkpoint("./ckp")

    //TODO 1.加载数据
    val lines: ReceiverInputDStream[String] = ssc.socketTextStream("node1", 9999)

    //TODO 2.处理数据
    //定义一个函数用来处理状态:把当前数据和历史状态进行累加
    //currentValues:表示该key(如:spark)的当前批次的值,如:[1,1]
    //historyValue:表示该key(如:spark)的历史值,第一次是0,后面就是之前的累加值如1
    val updateFunc = (currentValues: Seq[Int], historyValue: Option[Int]) => {
      if (currentValues.size > 0) {
        val currentResult: Int = currentValues.sum + historyValue.getOrElse(0)
        Some(currentResult)
      } else {
        historyValue
      }
    }

    val resultDS: DStream[(String, Int)] = lines.flatMap(_.split(" "))
      .map((_, 1))
      //.reduceByKey(_ + _)
      // updateFunc: (Seq[V], Option[S]) => Option[S]
      .updateStateByKey(updateFunc)

    //TODO 3.输出结果
    resultDS.print()

    ssc
  }
  def main(args: Array[String]): Unit = {
    //TODO 0.准备环境
    val ssc: StreamingContext = StreamingContext.getOrCreate("./ckp", creatingFunc _)
    ssc.sparkContext.setLogLevel("WARN")

    //TODO 4.启动并等待结束
    ssc.start()
    ssc.awaitTermination() //注意:流式应用程序启动之后需要一直运行等待手动停止/等待数据到来

    //TODO 5.关闭资源
    ssc.stop(stopSparkContext = true, stopGracefully = true) //优雅关闭
  }
}

案例4-窗口计算

如实际开发中:

每隔1min计算最近24小时的热搜排行榜

每隔10s计算最近10分钟的广告点击量

每隔1h计算最近7天的热搜

package cn.itcast.streaming

import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
 * Author itcast
 * Desc 使用SparkStreaming接收node1:9999的数据并做WordCount+窗口计算
 * 每隔5s计算最近10s的数据
 */
object WordCount04 {
  def main(args: Array[String]): Unit = {
    //TODO 0.准备环境
    val conf: SparkConf = new SparkConf().setAppName("spark").setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("WARN")
    //the time interval at which streaming data will be divided into batches
    val ssc: StreamingContext = new StreamingContext(sc,Seconds(5))//每隔5s划分一个批次

    //TODO 1.加载数据
    val lines: ReceiverInputDStream[String] = ssc.socketTextStream("node1",9999)

    //TODO 2.处理数据
    val resultDS: DStream[(String, Int)] = lines.flatMap(_.split(" "))
      .map((_, 1))
      //.reduceByKey(_ + _)
      //   windowDuration :窗口长度/窗口大小,表示要计算最近多长时间的数据
      //   slideDuration : 滑动间隔,表示每隔多长时间计算一次
      //   注意:windowDuration和slideDuration必须是batchDuration的倍数
      //  每隔5s(滑动间隔)计算最近10s(窗口长度/窗口大小)的数据
      //reduceByKeyAndWindow(聚合函数,windowDuration,slideDuration)
        //.reduceByKeyAndWindow(_+_,Seconds(10),Seconds(5))
      .reduceByKeyAndWindow((a:Int,b:Int)=>a+b,Seconds(10),Seconds(5))
    //实际开发中需要我们掌握的是如何根据需求设置windowDuration和slideDuration
    //如:
    //每隔10分钟(滑动间隔slideDuration)更新最近24小时(窗口长度windowDuration)的广告点击数量
    // .reduceByKeyAndWindow((a:Int,b:Int)=>a+b,Minutes(60*24),Minutes(10))

    //TODO 3.输出结果
    resultDS.print()

    //TODO 4.启动并等待结束
    ssc.start()
    ssc.awaitTermination()//注意:流式应用程序启动之后需要一直运行等待手动停止/等待数据到来

    //TODO 5.关闭资源
    ssc.stop(stopSparkContext = true, stopGracefully = true)//优雅关闭
  }
}

案例5-topN

package cn.itcast.streaming

import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
 * Author itcast
 * Desc 使用SparkStreaming接收node1:9999的数据并做WordCount+窗口计算
 * 模拟百度热搜排行榜每隔10s计算最近20s的热搜词
 */
object WordCount05 {
  def main(args: Array[String]): Unit = {
    //TODO 0.准备环境
    val conf: SparkConf = new SparkConf().setAppName("spark").setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("WARN")
    //the time interval at which streaming data will be divided into batches
    val ssc: StreamingContext = new StreamingContext(sc,Seconds(5))//每隔5s划分一个批次

    //TODO 1.加载数据
    val lines: ReceiverInputDStream[String] = ssc.socketTextStream("node1",9999)

    //TODO 2.处理数据
    val resultDS: DStream[(String, Int)] = lines.flatMap(_.split(" "))
      .map((_, 1))
      //模拟百度热搜排行榜每隔10s计算最近20s的热搜词Top3
      //windowDuration: Duration,
      //slideDuration: Duration
      .reduceByKeyAndWindow((a: Int, b: Int) => a + b, Seconds(20), Seconds(10))
      //注意DStream没有提供直接排序的方法,所以需要直接对底层的RDD操作
    //DStream的transform方法表示对DStream底层的RDD进行操作并返回结果
    val sortedResultDS: DStream[(String, Int)] = resultDS.transform(rdd => {
      val sortRDD: RDD[(String, Int)] = rdd.sortBy(_._2, false)
      val top3: Array[(String, Int)] = sortRDD.take(3)
      println("=======top3=====")
      top3.foreach(println)
      println("=======top3=====")
      sortRDD
    })

    //TODO 3.输出结果
    sortedResultDS.print()

    //TODO 4.启动并等待结束
    ssc.start()
    ssc.awaitTermination()//注意:流式应用程序启动之后需要一直运行等待手动停止/等待数据到来

    //TODO 5.关闭资源
    ssc.stop(stopSparkContext = true, stopGracefully = true)//优雅关闭
  }
}
/*
31省新增本土确诊23例:河北20例 31省新增本土确诊23例:河北20例 31省新增本土确诊23例:河北20例 31省新增本土确诊23例:河北20例
特朗普签令禁止与8款中国应用交易 特朗普签令禁止与8款中国应用交易
纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉
多家航空公司发布进出京退改票方案 多家航空公司发布进出京退改票方案 多家航空公司发布进出京退改票方案
石家庄中小学幼儿园暂停线下教学
 */

案例6-自定义输出

package cn.itcast.streaming

import java.sql.{Connection, DriverManager, PreparedStatement, Timestamp}

import org.apache.spark.rdd.RDD
import org.apache.spark.streaming.dstream.{DStream, ReceiverInputDStream}
import org.apache.spark.streaming.{Seconds, StreamingContext}
import org.apache.spark.{SparkConf, SparkContext}

/**
 * Author itcast
 * Desc 使用SparkStreaming接收node1:9999的数据并做WordCount+窗口计算
 * 模拟百度热搜排行榜每隔10s计算最近20s的热搜词
 * 最后使用自定义输出将结果输出到控制台/HDFS/MySQL
 */
object WordCount06 {
  def main(args: Array[String]): Unit = {
    //TODO 0.准备环境
    val conf: SparkConf = new SparkConf().setAppName("spark").setMaster("local[*]")
    val sc: SparkContext = new SparkContext(conf)
    sc.setLogLevel("WARN")
    //the time interval at which streaming data will be divided into batches
    val ssc: StreamingContext = new StreamingContext(sc,Seconds(5))//每隔5s划分一个批次

    //TODO 1.加载数据
    val lines: ReceiverInputDStream[String] = ssc.socketTextStream("node1",9999)

    //TODO 2.处理数据
    val resultDS: DStream[(String, Int)] = lines.flatMap(_.split(" "))
      .map((_, 1))
      //模拟百度热搜排行榜每隔10s计算最近20s的热搜词Top3
      //windowDuration: Duration,
      //slideDuration: Duration
      .reduceByKeyAndWindow((a: Int, b: Int) => a + b, Seconds(20), Seconds(10))
      //注意DStream没有提供直接排序的方法,所以需要直接对底层的RDD操作
    //DStream的transform方法表示对DStream底层的RDD进行操作并返回结果
    val sortedResultDS: DStream[(String, Int)] = resultDS.transform(rdd => {
      val sortRDD: RDD[(String, Int)] = rdd.sortBy(_._2, false)
      val top3: Array[(String, Int)] = sortRDD.take(3)
      println("=======top3=====")
      top3.foreach(println)
      println("=======top3=====")
      sortRDD
    })

    //TODO 3.输出结果
    sortedResultDS.print()//默认的输出
    //自定义输出
    sortedResultDS.foreachRDD((rdd,time)=>{
      val milliseconds: Long = time.milliseconds
      println("------自定义输出---------")
      println("batchtime:"+milliseconds)
      println("------自定义输出---------")
      //最后使用自定义输出将结果输出到控制台/HDFS/MySQL
      //输出到控制台
      rdd.foreach(println)
      //输出到HDFS
      rdd.coalesce(1).saveAsTextFile("data/output/result-"+milliseconds)
      //输出到MySQL
      /*
CREATE TABLE `t_hotwords` (
  `time` timestamp NOT NULL DEFAULT CURRENT_TIMESTAMP ON UPDATE CURRENT_TIMESTAMP,
  `word` varchar(255) NOT NULL,
  `count` int(11) DEFAULT NULL,
  PRIMARY KEY (`time`,`word`)
) ENGINE=InnoDB DEFAULT CHARSET=utf8;
       */
      rdd.foreachPartition(iter=>{
        //开启连接
        val conn: Connection = DriverManager.getConnection("jdbc:mysql://localhost:3306/bigdata?characterEncoding=UTF-8","root","root")
        val sql:String = "INSERT INTO `t_hotwords` (`time`, `word`, `count`) VALUES (?, ?, ?);"
        val ps: PreparedStatement = conn.prepareStatement(sql)
        iter.foreach(t=>{
          val word: String = t._1
          val count: Int = t._2
          ps.setTimestamp(1,new Timestamp(milliseconds) )
          ps.setString(2,word)
          ps.setInt(3,count)
          ps.addBatch()
        })
        ps.executeBatch()
        //关闭连接
        if (conn != null) conn.close()
        if (ps != null) ps.close()
      })
    })

    //TODO 4.启动并等待结束
    ssc.start()
    ssc.awaitTermination()//注意:流式应用程序启动之后需要一直运行等待手动停止/等待数据到来

    //TODO 5.关闭资源
    ssc.stop(stopSparkContext = true, stopGracefully = true)//优雅关闭
  }
}
/*
31省新增本土确诊23例:河北20例 31省新增本土确诊23例:河北20例 31省新增本土确诊23例:河北20例 31省新增本土确诊23例:河北20例
特朗普签令禁止与8款中国应用交易 特朗普签令禁止与8款中国应用交易
纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉 纸张价格上涨直逼猪肉
多家航空公司发布进出京退改票方案 多家航空公司发布进出京退改票方案 多家航空公司发布进出京退改票方案
石家庄中小学幼儿园暂停线下教学
 */
posted @ 2021-11-15 21:32  lmandcc  阅读(51)  评论(0编辑  收藏  举报