[组合数学]Neither AB nor BA
题目描述
Find the number of strings s of length N consisting of 'A', 'B', and 'C' that satisfy the following condition:
·s can be converted to the empty string by repeating the following operation:
The answer can be enormous, so compute the count modulo 998244353.
Constraints
·2≤N≤107
·N is an even number.
·s can be converted to the empty string by repeating the following operation:
·Choose two consecutive characters in s and erase them. However, choosing 'AB' or 'BA' is not allowed.For example, 'ABBC' satisfies the condition for N=4, because we can convert it as follows: 'ABBC' → (erase 'B'B) → 'AC' → (erase 'AC') → '(empty)'.
The answer can be enormous, so compute the count modulo 998244353.
Constraints
·2≤N≤107
·N is an even number.
输入
Input is given from Standard Input in the following format:
N
N
输出
Print the number of strings that satisfy the conditions, modulo 998244353.
样例输入 Copy
2
样例输出 Copy
7
提示
Except 'AB' and 'BA', all possible strings satisfy the conditions.
思路:首先不考虑'C'。把奇数位'A' 'B'互换,问题等价转换为只能消除相异的相邻两个字符,最终能消完的串有多少个。
这个问题的答案是'A' 'B'字符数相同的(即都等于n/2)串的个数。
那么考虑'C'的话,'C'可以被看做是'A' 'B'里任意一个,所以只要满足'A' 'B'字符个数的差不超过'C'的个数,那么这个串就能被消完。
所以不能被消完的串 就是num['A']>n/2 或 num['B']>n/2 的串。枚举统计有多少。
最后答案是总个数-不能被消完的个数。
#include<bits/stdc++.h> #pragma GCC optimize(2) typedef long long ll; using namespace std; const ll mod=998244353; ll f[10000005],invf[10000005]; inline ll qpow(ll a,ll b){ ll ret=1; while(b){ if(b&1) ret=ret*a%mod; a=a*a%mod; b>>=1; } return ret; } inline void init(ll n){ f[0]=1; for(ll i=1;i<=n;i++) f[i]=f[i-1]*i%mod; invf[n]=qpow(f[n],mod-2); for(ll i=n-1;i>=0;i--) invf[i]=invf[i+1]*(i+1)%mod; } inline ll C(ll n,ll m){ if(m<0||m>n) return 0; if(m==0||m==n) return 1; return f[n]*invf[m]%mod*invf[n-m]%mod; } int main() { ll n;scanf("%lld",&n); init(n); ll ans=0; for(ll i=n/2+1;i<=n;i++){ ans=(ans+C(n,i)*qpow(2,n-i))%mod; } ans=(qpow(3,n)-2*ans%mod+mod)%mod; printf("%lld\n",ans); return 0; }
转载请注明出处:https://www.cnblogs.com/lllxq/