python 如何使用摄像头(opencv)

1如何使用opencv 调取摄像头

import cv2

#采用opencv的库函数去调用摄像头

import time

 

cap=cv2.VideoCapture(0)

#cv2.VideoCapture(0)代表调取摄像头资源,其中0代表电脑摄像头,1代表外接摄像头(usb摄像头)

cap.set(3,900)

cap.set(4,900)

# cap.set()设置摄像头参数:3:宽   4:

while(cap.isOpened()):

#cap.isOpened()返回布尔值,来查看是否摄像头初始化成功

ret_flag, Vshow = cap.read()

#cap.read()返回两个值,第一个值为布尔值,如果视频正确,那么就返回true,  第二个值代表图像三维像素矩阵

    cv2.imshow('Capture', Vshow)

k=cv2.waitKey(1)

#重中之重,这个必须有,这个获取字母,但是一直不能通过,即等待一定时间内的用户反馈,如果用户没有按下按键,则继续等待循环。

 

Waitkey(0):无限等待按键

Waitkey(1):等待1毫秒,没有继续刷新

Waitkey(100):等待用户100毫秒,没有继续刷新

 

且实现这个按下q的功能,必须是在opencv窗口中才能实现,而不是在terminal

    if k==ord('s'):

        print('222222')

        print(cap.get(3))

        print(cap.get(4))

    elif k==ord('q'):

        print('完成')

        break

    print('摄像头捕获成功')

    # pass

# time.sleep(1)

cap.release()

cv2.destoryAllWindows()

 

 

 

 

 

代码:

import cv2

import time

 

cap=cv2.VideoCapture(0)

cap.set(3,900)

cap.set(4,900)

while(cap.isOpened()):

    ret_flag, Vshow = cap.read()

    cv2.imshow('Capture', Vshow)

    k=cv2.waitKey(1)

    if k==ord('s'):

        print('222222')

        print(cap.get(3))

        print(cap.get(4))

    elif k==ord('q'):

        print('完成')

        break

    #print('摄像头捕获成功')

    # pass

# time.sleep(1)

cap.release()

cv2.destoryAllWindows()

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OpenCV-Python(1)在Python中使用OpenCV进行人脸检测

OpenCV是如今最流行的计算机视觉库,而我们今天就是要学习如何安装使用OpenCV,以及如何去访问我们的摄像头。然后我们一起来看看写一个人脸检测程序是如何地简单,简单到只需要几行代码。

在开始之前,我假设你已经对Python有一定的了解。当然,如果你觉得你还不够格,这里有推荐一些学习Python的电子书,你可以先学习下Python,如此可以让你更好地理解接下来的步骤。另外,这里还推荐一本电子书来学习OpenCV。

好,不浪费时间,开始吧。

To setup opencv in python environment you will need these things ready ( match the versions to follow along with this tutorial),
首先我们需要先准备好这些环境(版本记得配好):

  • Python 2.x
  • OpenCV 3 (2也行,同理
  • Numpy库 (这个可以在稍后用pip下载)

首先,对于下载Python,我们可以先到官网上下对应的版本,如果是Windows就可能是msi格式的版本,如果是Mac就可能是pkg格式的安装包,如果是Linux则可能是源码包。

安装和Python后打开命令行就可以使用pip命令进行Python包的安装了,如:

 

由于OpenCV使用Numpy库,因此先通过命令pip install numpy安装Numpy库。安装完后,尝试导入,没有报错则ok:

 

然后进入OpenCV官网下对应的版本并安装,尝试导入:

 

尝试人脸检测

准备:我们需要准备pretrained分类器,在github里面的opencv源码中下载,搜索就好

万事俱备,只欠东风。我们来写代码检测人脸吧,来一发OpenCV的Hello world。

在这里我们准备使用pre-trained的XML文件(这个文件下载方法:在github上找到opencv,然后找到,然后找到文件,采用右键下载就可以了),这些XML文件都较难训练,但是我们不需要担心,因此OpenCV已经为我们提供了很多人脸检测相关的pre-trained分类器。

想要使用这写分类器,我们需要将分类器的XML文件haarcascade_frontalface_default.xmlopencv文件夹/sources/data/haarcascades/下复制到我们的项目目录下,就是我们将要写程序的目录下。如果没有opencv文件夹/sources/data/haarcascades/这个目录,可以尝试找一下opencv文件夹/share/OpenCV/haarcascades/。只要找到如下文件即可:

 

然后如果我们要加载这个分类器的话,如此就好:

detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

然后接下来我们先来测试一下摄像头吧,

cap = cv2.VideoCapture(0)

ret, img = cap.read()

cv2.imshow('windowname', img)

cv2.waitKey(0)

 

# 释放摄像头资源

cap.release()

以上的代码是调用你电脑的0号摄像头,并展示出来。当然,如果你有多个摄像头,那么你也可以试试别的id,修改VideoCapture函数的参数即可。

其中cap.read()就是从摄像头获取到图像,这个函数返回了两个变量,第一个为布尔值表示成功与否,以及第二个是图像。

然后程序通过imshow()展示图片,其第一个传入的参数为窗口的名称,而第二个就是要展示的图片,以上代码传入的就是我们的自拍。

waitKey是用来停在图片的展示界面,让你看清楚,参数可以是10、100、1000等,单位是毫秒,这里填0就是一直停着。注意了,如果停留的时间不够久,就可能看不见imshow的照片了。

运行了这段代码,你将会看到摄像头所拍摄的画面,一般来说就是你自己了。

 

接下来我们将图片先转换为灰度图片,

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

然后就开始了人脸检测之旅:

faces = detector.detectMultiScale(gray, 1.3, 5)

以上的这句代码会等到一串list,list中的每个都有x, y, height, width四个变量。其中list表示检测到的人脸,即list的size就是人脸的个数,而每个人脸在图片中的位置是(x, y, height, width)。

为了能让我们更直观地看出来检测结果,我们将这些人脸框出来:

for (x, y, w, h) in faces:

    cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

更进一步

现在我们已经通过摄像头检测到人脸了,但是我们真正需要的是不是一张静态的图片,我们需要的是一个能检测的实时动态视频流。因此我们加一个循环,然后不断的检测,最终在显示在新窗口中。

detector = cv2.CascadeClassifier('haarcascade_frontalface_default.xml')

cap = cv2.VideoCapture(0)

 

while True:

    ret, img = cap.read()

    gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

    faces = detector.detectMultiScale(gray, 1.3, 5)

    for (x, y, w, h) in faces:

        cv2.rectangle(img, (x, y), (x + w, y + h), (255, 0, 0), 2)

 

    cv2.imshow('frame', img)

    if cv2.waitKey(1) & 0xFF == ord('q'):

        break

 

cap.release()

cv2.destroyAllWindows()

需要注意的是,结尾用了waitKey和ord实现了按q退出的功能,就是每一毫秒都在检测键盘有没有按下了q,要是按下了就退出循环了。接下来就释放资源。

总结

在本文中,我们学习了如何使用Python中的OpenCV,即通过代码写了一个人脸检测的程序。我们温习或学习了这些知识点:

  • 使用OpenCV的分类器
  • 从摄像头中读取照片
  • 在图片上换框框
  • 在新窗口上展示图片
  • 实时地进行人脸检测

P.S. 你们发现了XML那里有一个叫猫脸识别的文件吗!!!

先这样吧

若有错误之处请指出,更多地关注煎鱼

 

posted @ 2019-07-29 15:09  freebirds  阅读(22314)  评论(1编辑  收藏  举报