Description
Given a sequence a[1],a[2],a[3]......a[n], your job is to calculate the max sum of a sub-sequence. For example, given (6,-1,5,4,-7), the max sum in this sequence is 6 + (-1) + 5 + 4 = 14.
Input
The first line of the input contains an integer T(1<=T<=20) which means the number of test cases. Then T lines follow, each line starts with a number N(1<=N<=100000), then N integers followed(all the integers are between -1000 and 1000).
Output
For each test case, you should output two lines. The first line is "Case #:", # means the number of the test case. The second line contains three integers, the Max Sum in the sequence, the start position of the sub-sequence, the end position of the sub-sequence. If there are more than one result, output the first one. Output a blank line between two cases.
Sample Input
2 5 6 -1 5 4 -7 7 0 6 -1 1 -6 7 -5
Sample Output
Case 1: 14 1 4 Case 2: 7 1 6
题目大意:给出一组数,求出最大的子序列
代码如下:
#include <iostream> #include <stdio.h> #include <string.h> using namespace std; int main() { int i,cs,testnum; int n,number,sum,start,end,temp,max; scanf("%d",&testnum); for(cs=1;cs<=testnum;cs++) { max=-1010; sum=0; temp=1; scanf("%d",&n); for(i=1;i<=n;i++) { scanf("%d",&number); sum+=number; if(sum>max) { max=sum; start=temp; end=i; } if(sum<0) { sum=0; temp=i+1; } } printf("Case %d:\n%d %d %d\n",cs,max,start,end); if(cs!=testnum) printf("\n"); } return 0; }