pytorch 调用forward 的具体流程

forward方法的具体流程:

以一个Module为例:
1. 调用module的call方法
2. module的call里面调用module的forward方法
3. forward里面如果碰到Module的子类,回到第1步,如果碰到的是Function的子类,继续往下
4. 调用Function的call方法
5. Function的call方法调用了Function的forward方法。
6. Function的forward返回值
7. module的forward返回值
8. 在module的call进行forward_hook操作,然后返回值。


上述中“调用module的call方法”是指nn.Module 的__call__方法。定义__call__方法的类可以当作函数调用,具体参考Python的面向对象编程。

也就是说,当把定义的网络模型model当作函数调用的时候就自动调用定义的网络模型的forward方法。nn.Module 的__call__方法部分源码如下所示:

    def __call__(self, *input, **kwargs):
       result = self.forward(*input, **kwargs)
       for hook in self._forward_hooks.values():
           #将注册的hook拿出来用
           hook_result = hook(self, input, result)
       ...
       return result


posted @   U_C  阅读(6151)  评论(0编辑  收藏  举报
编辑推荐:
· Linux glibc自带哈希表的用例及性能测试
· 深入理解 Mybatis 分库分表执行原理
· 如何打造一个高并发系统?
· .NET Core GC压缩(compact_phase)底层原理浅谈
· 现代计算机视觉入门之:什么是图片特征编码
阅读排行:
· 手把手教你在本地部署DeepSeek R1,搭建web-ui ,建议收藏!
· Spring AI + Ollama 实现 deepseek-r1 的API服务和调用
· 数据库服务器 SQL Server 版本升级公告
· 程序员常用高效实用工具推荐,办公效率提升利器!
· C#/.NET/.NET Core技术前沿周刊 | 第 23 期(2025年1.20-1.26)
点击右上角即可分享
微信分享提示