Description
Give you three sequences of numbers A, B, C, then we give you a number X. Now you need to calculate if you can find the three numbers Ai, Bj, Ck, which satisfy the formula Ai+Bj+Ck = X.Input
There are many cases. Every data case is described as followed: In the first line there are three integers L, N, M, in the second line there are L integers represent the sequence A, in the third line there are N integers represent the sequences B, in the forth line there are M integers represent the sequence C. In the fifth line there is an integer S represents there are S integers X to be calculated. 1<=L, N, M<=500, 1<=S<=1000. all the integers are 32-integers.Output
For each case, firstly you have to print the case number as the form “Case d:”, then for the S queries, you calculate if the formula can be satisfied or not. If satisfied, you print “YES”, otherwise print “NO”.Sample Input
3 3 3
1 2 3
1 2 3
1 2 3
3
1
4
10Sample Output
Case 1:
NO
YES
NO
题目大意
给A,B,C三个序列,分别从这三个序列中找三个数,若存在三个数之和等于X,则输出”YES”,否则输出”NO”
解析
三重循环的搜索肯定是不能用的。我的解法是将a+b的值存到ab数组中,将该数组排序。再用二分搜索判断x-c是否存在于该数组中,若存在,则证明存在x=a+b+c,输出’YES’即可。若对于所有c,都不存在x-c属于该数组,则证明不存在x=a+b+c,输出’NO’即可。存在一定的技巧,下面贴一波代码
代码
#include <iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
int main()
{
int a[510],b[510],c[510],ab[250010];
int l,n,m;
int s;
int x[1010];
int kase=0;
bool ans;
while(scanf("%d%d%d",&l,&n,&m)!=EOF){
kase++;
for(int i=0;i<l;i++){
scanf("%d",&a[i]);
}
for(int i=0;i<n;i++){
scanf("%d",&b[i]);
}
for(int i=0;i<m;i++){
scanf("%d",&c[i]);
}
scanf("%d",&s);
for(int i=0;i<s;i++){
scanf("%d",&x[i]);
}
for(int i=0;i<l;i++){
for(int j=0;j<n;j++){
ab[i*l+j]=a[i]+b[j];
}
}
sort(ab,ab+l*n);
printf("Case %d:\n",kase);
for(int i=0;i<s;i++){
ans=false;
for(int j=0;j<m;j++){
if(binary_search(ab,ab+l*n,x[i]-c[j])){
ans=true;
break;
}
}
if(ans){
printf("YES\n");
}else{
printf("NO\n");
}
}
}
}