Redis
初始Redis
NoSQL
NoSql可以翻译做Not Only Sql(不仅仅是SQL),或者是No Sql(非Sql的)数据库。是相对于传统关系型数据库而言,有很大差异的一种特殊的数据库,因此也称之为非关系型数据库。
NoSQL和SQL的差异
- SQL
- 结构化(Structured)
- 关联的(Relational)
- SQL查询
- 必须满足ACID
- ...
- NoSQL
- 非结构化
- 无关联的
- 非SQL,没有固定的语法
- BASE
- ...
Redis基本介绍
REmote DIctionary Server(Redis) 是一个由 Salvatore Sanfilippo 写的键值的(key-value) 存储系统,是跨平台的非关系型数据库。
Redis 是一个开源的使用 ANSI C 语言编写、遵守 BSD 协议、支持网络、可基于内存、分布式、可选持久性的键值对(Key-Value)存储数据库,并提供多种语言的 API。
Redis 通常被称为数据结构服务器,因为值(value)可以是字符串(String)、哈希(Hash)、列表(list)、集合(sets)和有序集合(sorted sets)等类型。
特征:
- 键值(key-value)型,value支持多种不同数据结构,功能丰富
- 单线程,每个命令具备原子性
- 低延迟,速度快(基于内存、IO多路复用、良好的编码)
- 支持数据的持久化
- 支持主从集群、分片集群
- 支持多语言客户端
安装Redis
大多数企业都是基于Linux服务器来部署项目,而且Redis官方也没有提供Windows版本的安装包。因此课程中我们会基于Linux系统来安装Redis.
此处选择的Linux版本为CentOS 7.
依赖库
Redis是基于C语言编写的,因此首先需要安装Redis所需要的gcc依赖:
yum install -y gcc tcl
上传安装包并解压
- 然后将Redis安装包上传到虚拟机的任意目录:
例如,我放到了/usr/local/src 目录:
- 解压缩:
tar -xzvf redis-6.2.6.tar.gz
- 进入到redis目录
cd redis-6.2.6
- 运行编译命令:
make && make install
如果没有出错,应该就安装成功了。
- 安装完成
安装完成之后所在目录:/usr/local/bin
该目录已经默认配置到环境变量,因此可以在任意目录下运行这些命令。其中:
- redis-cli:是redis提供的命令行客户端
- redis-server:是redis的服务端启动脚本
- redis-sentinel:是redis的哨兵启动脚本
启动
redis的启动方式有很多种,例如:
- 默认启动
- 指定配置启动
- 开机自启
默认启动redis
安装完成后,在任意目录输入redis-server命令即可启动Redis:
redis-server
这种启动属于前台启动
,会阻塞整个会话窗口,窗口关闭或者按下CTRL + C
则Redis停止。不推荐使用。
指定配置启动redis
如果要让Redis以后台
方式启动,则必须修改Redis配置文件,就在我们之前解压的redis安装包下(/usr/local/src/redis-6.2.6
),名字叫redis.conf:
我们先将这个配置文件备份一份:
cp redis.conf redis.conf.bck
出错之后可以恢复
- 然后修改redis.conf文件中的一些配置:
# 允许访问的地址,默认是127.0.0.1,会导致只能在本地访问。修改为0.0.0.0则可以在任意IP访问,生产环境不要设置为0.0.0.0
bind 0.0.0.0
# 守护进程,修改为yes后即可后台运行
daemonize yes
# 密码,设置后访问Redis必须输入密码
requirepass 123456
- Redis的其它常见配置:
# 监听的端口
port 6379
# 工作目录,默认是当前目录,也就是运行redis-server时的命令,日志.持久化等文件会保存在这个目录
dir .
# 数据库数量,设置为1,代表只使用1个库,默认有16个库,编号0~15
databases 1
# 设置redis能够使用的最大内存
maxmemory 512mb
# 日志文件,默认为空,不记录日志,可以指定日志文件名
logfile "redis.log"
- 启动Redis:
# 进入redis安装目录
cd /usr/local/src/redis-6.2.6
# 启动
redis-server redis.conf
停止服务:
# 利用redis-cli来执行 shutdown 命令,即可停止 Redis 服务,
# 因为之前配置了密码,因此需要通过 -u 来指定密码
redis-cli -u 123321 shutdown
开机自启redis
我们也可以通过配置来实现开机自启。
- 首先,新建一个系统服务文件:
vi /etc/systemd/system/redis.service
内容如下:
[Unit]
Description=redis-server
After=network.target
[Service]
Type=forking
ExecStart=/usr/local/bin/redis-server /usr/local/src/redis-6.2.6/redis.conf
PrivateTmp=true
[Install]
WantedBy=multi-user.target
- 然后重载系统服务:
systemctl daemon-reload
现在,我们可以用下面这组命令来操作redis了:
# 启动
systemctl start redis
# 停止
systemctl stop redis
# 重启
systemctl restart redis
# 查看状态
systemctl status redis
- 执行下面的命令,可以让redis开机自启:
systemctl enable redis
Redis桌面客户端
Redis安装完成后就自带了命令行客户端:redis-cli,使用方式如下:
redis-cli [options] [commonds]
其中常见的options有:
-h 127.0.0.1
:指定要连接的redis节点的IP地址,默认是127.0.0.1-p 6379
:指定要连接的redis节点的端口,默认是6379-a 123456
:指定redis的访问密码
其中的commonds就是Redis的操作命令,例如:
ping
:与redis服务端做心跳测试,服务端正常会返回pong
不指定commond时,会进入redis-cli
的交互控制台:
图形化桌面客户端
GitHub上的大神编写了Redis的图形化桌面客户端,地址:https://github.com/uglide/RedisDesktopManager
不过该仓库提供的是RedisDesktopManager的源码,并未提供windows安装包。
在下面这个仓库可以找到安装包:https://github.com/lework/RedisDesktopManager-Windows/releases
Redis常见命令
Redis数据结构介绍
Redis是一个key-value的数据库,key一般是String类型,不过value的类型多种多样:
贴心小建议:命令不要死记,学会查询就好啦
Redis为了方便我们学习,将操作不同数据类型的命令也做了分组,在官网( https://redis.io/commands )可以查看到不同的命令:
当然我们也可以通过Help命令来帮助我们去查看命令
Redis的通用命令
通用命令是部分数据类型的,都可以使用的命令,常见的的有:
- KEYS:查看符合模板的所有key
- DEL:删除一个指定的key
- EXISTS:判断key是否存在
- EXPIRE:给一个key设置有效期,有效期到期时该key会被自动删除
- TTL:查看一个KEY的剩余有效期
通过help [command] 可以查看一个命令的具体用法,例如:
Redis的String类型
String类型,也就是字符串类型,是Redis中最简单的存储类型。
其value是字符串,不过根据字符串的格式不同,又可以分为3类:
- string:普通字符串
- int:整数类型,可以做自增.自减操作
- float:浮点类型,可以做自增.自减操作
String的常见命令
String的常见命令有:
- SET:添加或者修改已经存在的一个String类型的键值对
- GET:根据key获取String类型的value
- MSET:批量添加多个String类型的键值对
- MGET:根据多个key获取多个String类型的value
- INCR:让一个整型的key自增1
- INCRBY:让一个整型的key自增并指定步长,例如:incrby num 2 让num值自增2
- INCRBYFLOAT:让一个浮点类型的数字自增并指定步长
- SETNX:添加一个String类型的键值对,前提是这个key不存在,否则不执行
- SETEX:添加一个String类型的键值对,并且指定有效期
贴心小提示:以上命令除了INCRBYFLOAT 都是常用命令
Redis命令-Key的层级结构
Redis没有类似MySQL中的Table的概念,我们该如何区分不同类型的key呢?
例如,需要存储用户.商品信息到redis,有一个用户id是1,有一个商品id恰好也是1,此时如果使用id作为key,那就会冲突了,该怎么办?
我们可以通过给key添加前缀加以区分,不过这个前缀不是随便加的,有一定的规范:
Redis的key允许有多个单词形成层级结构,多个单词之间用':'隔开,格式如下:
这个格式并非固定,也可以根据自己的需求来删除或添加词条。
例如我们的项目名称叫 heima,有user和product两种不同类型的数据,我们可以这样定义key:
-
user相关的key:heima:user:1
-
product相关的key:heima:product:1
如果Value是一个Java对象,例如一个User对象,则可以将对象序列化为JSON字符串后存储:
KEY | VALUE |
---|---|
heima:user:1 | |
heima:product:1 |
一旦我们向redis采用这样的方式存储,那么在可视化界面中,redis会以层级结构来进行存储,形成类似于这样的结构,更加方便Redis获取数据
Redis命令-Hash命令
Hash类型,也叫散列,其value是一个无序字典,类似于Java中的HashMap结构。
String结构是将对象序列化为JSON字符串后存储,当需要修改对象某个字段时很不方便:
Hash结构可以将对象中的每个字段独立存储,可以针对单个字段做CRUD:
Hash类型的常见命令
-
HSET key field value:添加或者修改hash类型key的field的值
-
HGET key field:获取一个hash类型key的field的值
-
HMSET:批量添加多个hash类型key的field的值
-
HMGET:批量获取多个hash类型key的field的值
-
HGETALL:获取一个hash类型的key中的所有的field和value
-
HKEYS:获取一个hash类型的key中的所有的field
-
HINCRBY:让一个hash类型key的字段值自增并指定步长
-
HSETNX:添加一个hash类型的key的field值,前提是这个field不存在,否则不执行
贴心小提示:哈希结构也是我们以后实际开发中常用的命令哟
Redis的List类型
Redis中的List类型与Java中的LinkedList类似,可以看做是一个双向链表结构。既可以支持正向检索和也可以支持反向检索。
特征也与LinkedList类似:
- 有序
- 元素可以重复
- 插入和删除快
- 查询速度一般
常用来存储一个有序数据,例如:朋友圈点赞列表,评论列表等。
List的常见命令有:
- LPUSH key element ... :向列表左侧插入一个或多个元素
- LPOP key:移除并返回列表左侧的第一个元素,没有则返回nil
- RPUSH key element ... :向列表右侧插入一个或多个元素
- RPOP key:移除并返回列表右侧的第一个元素
- LRANGE key star end:返回一段角标范围内的所有元素
- BLPOP和BRPOP:与LPOP和RPOP类似,只不过在没有元素时等待指定时间,而不是直接返回nil
Redis命令-Set命令
Redis的Set结构与Java中的HashSet类似,可以看做是一个value为null的HashMap。因为也是一个hash表,因此具备与HashSet类似的特征:
- 无序
- 元素不可重复
- 查找快
- 支持交集.并集.差集等功能
Set类型的常见命令
- SADD key member ... :向set中添加一个或多个元素
- SREM key member ... : 移除set中的指定元素
- SCARD key: 返回set中元素的个数
- SISMEMBER key member:判断一个元素是否存在于set中
- SMEMBERS:获取set中的所有元素
- SINTER key1 key2 ... :求key1与key2的交集
- SDIFF key1 key2 ... :求key1与key2的差集
- SUNION key1 key2 ..:求key1和key2的并集
Redis命令-SortedSet类型
Redis的SortedSet是一个可排序的set集合,与Java中的TreeSet有些类似,但底层数据结构却差别很大。SortedSet中的每一个元素都带有一个score属性,可以基于score属性对元素排序,底层的实现是一个跳表(SkipList)加 hash表。
SortedSet具备下列特性:
- 可排序
- 元素不重复
- 查询速度快
因为SortedSet的可排序特性,经常被用来实现排行榜这样的功能。
SortedSet的常见命令有:
- ZADD key score member:添加一个或多个元素到sorted set ,如果已经存在则更新其score值
- ZREM key member:删除sorted set中的一个指定元素
- ZSCORE key member : 获取sorted set中的指定元素的score值
- ZRANK key member:获取sorted set 中的指定元素的排名
- ZCARD key:获取sorted set中的元素个数
- ZCOUNT key min max:统计score值在给定范围内的所有元素的个数
- ZINCRBY key increment member:让sorted set中的指定元素自增,步长为指定的increment值
- ZRANGE key min max:按照score排序后,获取指定排名范围内的元素
- ZRANGEBYSCORE key min max:按照score排序后,获取指定score范围内的元素
- ZDIFF.ZINTER.ZUNION:求差集.交集.并集
注意:所有的排名默认都是升序,如果要降序则在命令的Z后面添加REV即可,例如:
- 升序获取sorted set 中的指定元素的排名:ZRANK key member
- 降序获取sorted set 中的指定元素的排名:ZREVRANK key memeber
Redis的Java客户端-Jedis
在Redis官网中提供了各种语言的客户端,地址:https://redis.io/docs/clients/
标记为❤的就是推荐使用的java客户端,包括:
- Jedis和Lettuce:这两个主要是提供了Redis命令对应的API,方便我们操作Redis,而SpringDataRedis又对这两种做了抽象和封装,因此我们后期会直接以SpringDataRedis来学习。
- Redisson:是在Redis基础上实现了分布式的可伸缩的java数据结构,例如Map.Queue等,而且支持跨进程的同步机制:Lock.Semaphore等待,比较适合用来实现特殊的功能需求。
Jedis快速入门
入门案例详细步骤
案例分析:
- 创建工程:
- 引入依赖:
<!--jedis-->
<dependency>
<groupId>redis.clients</groupId>
<artifactId>jedis</artifactId>
<version>3.7.0</version>
</dependency>
<!--单元测试-->
<dependency>
<groupId>org.junit.jupiter</groupId>
<artifactId>junit-jupiter</artifactId>
<version>5.7.0</version>
<scope>test</scope>
</dependency>
- 建立连接
新建一个单元测试类,内容如下:
private Jedis jedis;
@Before
public void setUp(){
//建立连接
jedis = new Jedis("192.168.171.128",6379);
//设置密码
jedis.auth("123456");
//选择库
jedis.select(0);
}
- 测试:
@Test
void testString() {
// 存入数据
String result = jedis.set("name", "虎哥");
System.out.println("result = " + result);
// 获取数据
String name = jedis.get("name");
System.out.println("name = " + name);
}
@Test
void testHash() {
// 插入hash数据
jedis.hset("user:1", "name", "Jack");
jedis.hset("user:1", "age", "21");
// 获取
Map<String, String> map = jedis.hgetAll("user:1");
System.out.println(map);
}
- 释放资源
@AfterEach
void tearDown() {
if (jedis != null) {
jedis.close();
}
}
Jedis连接池
jedis本身是线程不安全的,并且频繁的创建和销毁连接会有性能损耗,因此我们推荐大家使用jedis连接池代替jedis的直连方式
Jedis连接池JedisConnectionFactory
package com.lkjedu.jedis.utils;
import redis.clients.jedis.Jedis;
import redis.clients.jedis.JedisPool;
import redis.clients.jedis.JedisPoolConfig;
public class JedisConnectionFactory {
//JedisPool是官方提供的一个连接池对象
private static final JedisPool jedisPool;
static {
//配置连接池
JedisPoolConfig poolConfig = new JedisPoolConfig();
poolConfig.setMaxTotal(8);//最大连接数
poolConfig.setMaxIdle(8);//最大空闲连接
poolConfig.setMinIdle(0);//最小空闲连接
poolConfig.setMaxWaitMillis(1000);//最大等待时间,单位毫秒
jedisPool = new JedisPool(poolConfig,
"192.168.171.128",
6379,
1000,
"123456");
}
public static Jedis getJedis(){
return jedisPool.getResource();
}
}
代码说明:
-
1) JedisConnectionFacotry:工厂设计模式是实际开发中非常常用的一种设计模式,我们可以使用工厂,去降低代的耦合,比如Spring中的Bean的创建,就用到了工厂设计模式
-
2)静态代码块:随着类的加载而加载,确保只能执行一次,我们在加载当前工厂类的时候,就可以执行static的操作完成对 连接池的初始化
-
3)最后提供返回连接池中连接的方法.
改造原始代码
代码说明:
1.在我们完成了使用工厂设计模式来完成代码的编写之后,我们在获得连接时,就可以通过工厂来获得。
,而不用直接去new对象,降低耦合,并且使用的还是连接池对象。
2.当我们使用了连接池后,当我们关闭连接其实并不是关闭,而是将Jedis还回连接池的。
@BeforeEach
void setUp(){
//建立连接
/*jedis = new Jedis("127.0.0.1",6379);*/
jedis = JedisConnectionFacotry.getJedis();
//选择库
jedis.select(0);
}
@AfterEach
void tearDown() {
if (jedis != null) {
jedis.close();
}
}
Redis的Java客户端-SpringDataRedis
SpringData是Spring中数据操作的模块,包含对各种数据库的集成,其中对Redis的集成模块就叫做SpringDataRedis,官网地址:https://spring.io/projects/spring-data-redis
- 提供了对不同Redis客户端的整合(Lettuce和Jedis)
- 提供了RedisTemplate统一API来操作Redis
- 支持Redis的发布订阅模型
- 支持Redis哨兵和Redis集群
- 支持基于Lettuce的响应式编程
- 支持基于JDK.JSON.字符串.Spring对象的数据序列化及反序列化
- 支持基于Redis的JDKCollection实现
SpringDataRedis中提供了RedisTemplate工具类,其中封装了各种对Redis的操作。并且将不同数据类型的操作API封装到了不同的类型中:
SpringDataRedis快速入门
SpringBoot已经提供了对SpringDataRedis的支持,使用非常简单:
- 引入依赖
<?xml version="1.0" encoding="UTF-8"?>
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 https://maven.apache.org/xsd/maven-4.0.0.xsd">
<modelVersion>4.0.0</modelVersion>
<parent>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-parent</artifactId>
<version>2.5.7</version>
<relativePath/> <!-- lookup parent from repository -->
</parent>
<groupId>com.heima</groupId>
<artifactId>redis-demo</artifactId>
<version>0.0.1-SNAPSHOT</version>
<name>redis-demo</name>
<description>Demo project for Spring Boot</description>
<properties>
<java.version>1.8</java.version>
</properties>
<dependencies>
<!--redis依赖-->
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-data-redis</artifactId>
</dependency>
<!--common-pool-->
<dependency>
<groupId>org.apache.commons</groupId>
<artifactId>commons-pool2</artifactId>
</dependency>
<!--Jackson依赖-->
<dependency>
<groupId>com.fasterxml.jackson.core</groupId>
<artifactId>jackson-databind</artifactId>
</dependency>
<dependency>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
<optional>true</optional>
</dependency>
<dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-test</artifactId>
<scope>test</scope>
</dependency>
</dependencies>
<build>
<plugins>
<plugin>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-maven-plugin</artifactId>
<configuration>
<excludes>
<exclude>
<groupId>org.projectlombok</groupId>
<artifactId>lombok</artifactId>
</exclude>
</excludes>
</configuration>
</plugin>
</plugins>
</build>
</project>
- 配置文件
spring:
redis:
host: 192.168.150.101
port: 6379
password: 123321
lettuce:
pool:
max-active: 8 #最大连接
max-idle: 8 #最大空闲连接
min-idle: 0 #最小空闲连接
max-wait: 100ms #连接等待时间
- .测试代码
@SpringBootTest
class RedisDemoApplicationTests {
@Autowired
private RedisTemplate<String, Object> redisTemplate;
@Test
void testString() {
// 写入一条String数据
redisTemplate.opsForValue().set("name", "虎哥");
// 获取string数据
Object name = redisTemplate.opsForValue().get("name");
System.out.println("name = " + name);
}
}
贴心小提示:SpringDataJpa使用起来非常简单,记住如下几个步骤即可
SpringDataRedis的使用步骤:
- 引入spring-boot-starter-data-redis依赖
- 在application.yml配置Redis信息
- 注入RedisTemplate
数据序列化器
RedisTemplate可以接收任意Object作为值写入Redis:
缺点:
- 可读性差
- 内存占用较大
我们可以自定义RedisTemplate的序列化方式,代码如下:
package com.lkjedu.boot.config;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import org.springframework.data.redis.connection.RedisConnectionFactory;
import org.springframework.data.redis.core.RedisTemplate;
import org.springframework.data.redis.serializer.GenericJackson2JsonRedisSerializer;
import org.springframework.data.redis.serializer.RedisSerializer;
@Configuration
public class RedisConfig {
@Bean
public RedisTemplate<String,Object> redisTemplate(RedisConnectionFactory redisConnectionFactory){
//创建RedisTemplate对象
RedisTemplate<String, Object> redisTemplate = new RedisTemplate<>();
//设置连接工厂
redisTemplate.setConnectionFactory(redisConnectionFactory);
//创建JSON序列化工具
GenericJackson2JsonRedisSerializer jsonRedisSerializer = new GenericJackson2JsonRedisSerializer();
//设置key的序列化
redisTemplate.setKeySerializer(RedisSerializer.string());
redisTemplate.setHashKeySerializer(RedisSerializer.string());
//设置val的序列化
redisTemplate.setValueSerializer(jsonRedisSerializer);
redisTemplate.setHashValueSerializer(jsonRedisSerializer);
//返回
return redisTemplate;
}
}
这里采用了JSON序列化来代替默认的JDK序列化方式。最终结果如图:
整体可读性有了很大提升,并且能将Java对象自动的序列化为JSON字符串,并且查询时能自动把JSON反序列化为Java对象。不过,其中记录了序列化时对应的class名称,目的是为了查询时实现自动反序列化。这会带来额外的内存开销。
StringRedisTemplate
尽管JSON的序列化方式可以满足我们的需求,但依然存在一些问题,如图:
为了在反序列化时知道对象的类型,JSON序列化器会将类的class类型写入json结果中,存入Redis,会带来额外的内存开销。
为了减少内存的消耗,我们可以采用手动序列化的方式,换句话说,就是不借助默认的序列化器,而是我们自己来控制序列化的动作,同时,我们只采用String的序列化器,这样,在存储value时,我们就不需要在内存中就不用多存储数据,从而节约我们的内存空间
这种用法比较普遍,因此SpringDataRedis就提供了RedisTemplate的子类:StringRedisTemplate,它的key和value的序列化方式默认就是String方式。
省去了我们自定义RedisTemplate的序列化方式的步骤,而是直接使用:
package com.lkjedu.boot;
import com.fasterxml.jackson.core.JsonParser;
import com.fasterxml.jackson.core.JsonProcessingException;
import com.fasterxml.jackson.databind.ObjectMapper;
import com.lkjedu.boot.pojo.User;
import org.junit.jupiter.api.Test;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.boot.test.context.SpringBootTest;
import org.springframework.data.redis.core.StringRedisTemplate;
@SpringBootTest
class StringRedisTemplateTest {
@Autowired
private StringRedisTemplate stringRedisTemplate;
@Test
void contextLoads() {
stringRedisTemplate.opsForValue().set("name","虎哥");
Object name = stringRedisTemplate.opsForValue().get("name");
System.out.println(name);
}
@Test
public void test() throws JsonProcessingException {
//创建对象
User user = new User("杀马特团长", 32);
//把user类转换成json字符串,并且手动序列化
ObjectMapper objectMapper = new ObjectMapper();
String json = objectMapper.writeValueAsString(user);
//写入数据
stringRedisTemplate.opsForValue().set("user:1", json);
//获取数据
String user1 = stringRedisTemplate.opsForValue().get("user:1");
System.out.println(user1);
//手动的反序列化
User user2 = objectMapper.readValue(user1, User.class);
System.out.println(user2);
}
}
此时我们再来看一看存储的数据,小伙伴们就会发现那个class数据已经不在了,节约了我们的空间~
Hash结构操作
public void testHash(){
stringRedisTemplate.opsForHash().put("user:3","name","刀哥");
Map<Object, Object> entries = stringRedisTemplate.opsForHash().entries("user:3");
System.out.println(entries);
}
Redis企业实战
短信登录
-
导入黑马点评项目
-
导入SQL
-
有关当前模型
手机或者app端发起请求,请求我们的nginx服务器,nginx基于七层模型走的事HTTP协议,可以实现基于Lua直接绕开tomcat访问redis,也可以作为静态资源服务器,轻松扛下上万并发, 负载均衡到下游tomcat服务器,打散流量,我们都知道一台4核8G的tomcat,在优化和处理简单业务的加持下,大不了就处理1000左右的并发, 经过nginx的负载均衡分流后,利用集群支撑起整个项目,同时nginx在部署了前端项目后,更是可以做到动静分离,进一步降低tomcat服务的压力,这些功能都得靠nginx起作用,所以nginx是整个项目中重要的一环。
在tomcat支撑起并发流量后,我们如果让tomcat直接去访问Mysql,根据经验Mysql企业级服务器只要上点并发,一般是16或32 核心cpu,32 或64G内存,像企业级mysql加上固态硬盘能够支撑的并发,大概就是4000起~7000左右,上万并发, 瞬间就会让Mysql服务器的cpu,硬盘全部打满,容易崩溃,所以我们在高并发场景下,会选择使用mysql集群,同时为了进一步降低Mysql的压力,同时增加访问的性能,我们也会加入Redis,同时使用Redis集群使得Redis对外提供更好的服务。
-
导入后端项目
在资料中提供了一个项目源码:
-
导入前端工程
-
运行前端项目
-
-
基于Session实现登录流程
-
发送验证码:
用户在提交手机号后,会校验手机号是否合法,如果不合法,则要求用户重新输入手机号
如果手机号合法,后台此时生成对应的验证码,同时将验证码进行保存,然后再通过短信的方式将验证码发送给用户
-
短信验证码登录、注册:
用户将验证码和手机号进行输入,后台从session中拿到当前验证码,然后和用户输入的验证码进行校验,如果不一致,则无法通过校验,如果一致,则后台根据手机号查询用户,如果用户不存在,则为用户创建账号信息,保存到数据库,无论是否存在,都会将用户信息保存到session中,方便后续获得当前登录信息
-
校验登录状态:
用户在请求时候,会从cookie中携带者JsessionId到后台,后台通过JsessionId从session中拿到用户信息,如果没有session信息,则进行拦截,如果有session信息,则将用户信息保存到threadLocal中,并且放行
-
-
实现发送短信验证码功能
页面流程
具体代码如下
贴心小提示:
具体逻辑上文已经分析,我们仅仅只需要按照提示的逻辑写出代码即可。
-
发送验证码
@Override public Result sendCode(String phone, HttpSession session) { // 1.校验手机号 if (RegexUtils.isPhoneInvalid(phone)) { // 2.如果不符合,返回错误信息 return Result.fail("手机号格式错误!"); } // 3.符合,生成验证码 String code = RandomUtil.randomNumbers(6); // 4.保存验证码到 session session.setAttribute("code",code); // 5.发送验证码 log.debug("发送短信验证码成功,验证码:{}", code); // 返回ok return Result.ok(); }
-
登录
@Override public Result login(LoginFormDTO loginForm, HttpSession session) { // 1.校验手机号 String phone = loginForm.getPhone(); if (RegexUtils.isPhoneInvalid(phone)) { // 2.如果不符合,返回错误信息 return Result.fail("手机号格式错误!"); } // 3.校验验证码 Object cacheCode = session.getAttribute("code"); String code = loginForm.getCode(); if(cacheCode == null || !cacheCode.toString().equals(code)){ //3.不一致,报错 return Result.fail("验证码错误"); } //一致,根据手机号查询用户 User user = query().eq("phone", phone).one(); //5.判断用户是否存在 if(user == null){ //不存在,则创建 user = createUserWithPhone(phone); } //7.保存用户信息到session中 session.setAttribute("user",user); return Result.ok(); }
-
-
实现登录拦截功能
温馨小贴士:tomcat的运行原理
当用户发起请求时,会访问我们像tomcat注册的端口,任何程序想要运行,都需要有一个线程对当前端口号进行监听,tomcat也不例外,当监听线程知道用户想要和tomcat连接连接时,那会由监听线程创建socket连接,socket都是成对出现的,用户通过socket像互相传递数据,当tomcat端的socket接受到数据后,此时监听线程会从tomcat的线程池中取出一个线程执行用户请求,在我们的服务部署到tomcat后,线程会找到用户想要访问的工程,然后用这个线程转发到工程中的controller,service,dao中,并且访问对应的DB,在用户执行完请求后,再统一返回,再找到tomcat端的socket,再将数据写回到用户端的socket,完成请求和响应
通过以上讲解,我们可以得知 每个用户其实对应都是去找tomcat线程池中的一个线程来完成工作的, 使用完成后再进行回收,既然每个请求都是独立的,所以在每个用户去访问我们的工程时,我们可以使用threadlocal来做到线程隔离,每个线程操作自己的一份数据
温馨小贴士:关于threadlocal
如果小伙伴们看过threadLocal的源码,你会发现在threadLocal中,无论是他的put方法和他的get方法, 都是先从获得当前用户的线程,然后从线程中取出线程的成员变量map,只要线程不一样,map就不一样,所以可以通过这种方式来做到线程隔离
-
拦截器代码
public class LoginInterceptor implements HandlerInterceptor { @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { //1.获取session HttpSession session = request.getSession(); //2.获取session中的用户 Object user = session.getAttribute("user"); //3.判断用户是否存在 if(user == null){ //4.不存在,拦截,返回401状态码 response.setStatus(401); return false; } //5.存在,保存用户信息到Threadlocal UserHolder.saveUser((User)user); //6.放行 return true; } }
-
让拦截器生效
@Configuration public class MvcConfig implements WebMvcConfigurer { @Resource private StringRedisTemplate stringRedisTemplate; @Override public void addInterceptors(InterceptorRegistry registry) { // 登录拦截器 registry.addInterceptor(new LoginInterceptor()) .excludePathPatterns( "/shop/**", "/voucher/**", "/shop-type/**", "/upload/**", "/blog/hot", "/user/code", "/user/login" ).order(1); // token刷新的拦截器 registry.addInterceptor(new RefreshTokenInterceptor(stringRedisTemplate)).addPathPatterns("/**").order(0); } }
-
-
隐藏用户敏感信息
我们通过浏览器观察到此时用户的全部信息都在,这样极为不靠谱,所以我们应当在返回用户信息之前,将用户的敏感信息进行隐藏,采用的核心思路就是书写一个UserDto对象,这个UserDto对象就没有敏感信息了,我们在返回前,将有用户敏感信息的User对象转化成没有敏感信息的UserDto对象,那么就能够避免这个尴尬的问题了
-
在登录方法处修改
//7.保存用户信息到session中 session.setAttribute("user", BeanUtils.copyProperties(user,UserDTO.class));
-
在拦截器处:
//5.存在,保存用户信息到Threadlocal UserHolder.saveUser((UserDTO) user);
-
在UserHolder处:将user对象换成UserDTO
public class UserHolder { private static final ThreadLocal<UserDTO> tl = new ThreadLocal<>(); public static void saveUser(UserDTO user){ tl.set(user); } public static UserDTO getUser(){ return tl.get(); } public static void removeUser(){ tl.remove(); } }
-
-
session共享问题
核心思路分析:
每个tomcat中都有一份属于自己的session,假设用户第一次访问第一台tomcat,并且把自己的信息存放到第一台服务器的session中,但是第二次这个用户访问到了第二台tomcat,那么在第二台服务器上,肯定没有第一台服务器存放的session,所以此时 整个登录拦截功能就会出现问题,我们能如何解决这个问题呢?早期的方案是session拷贝,就是说虽然每个tomcat上都有不同的session,但是每当任意一台服务器的session修改时,都会同步给其他的Tomcat服务器的session,这样的话,就可以实现session的共享了
但是这种方案具有两个大问题
1、每台服务器中都有完整的一份session数据,服务器压力过大。
2、session拷贝数据时,可能会出现延迟
所以咱们后来采用的方案都是基于redis来完成,我们把session换成redis,redis数据本身就是共享的,就可以避免session共享的问题了
-
Redis代替session的业务流程
-
设计key的结构
首先我们要思考一下利用redis来存储数据,那么到底使用哪种结构呢?由于存入的数据比较简单,我们可以考虑使用String,或者是使用哈希,如下图,如果使用String,同学们注意他的value,用多占用一点空间,如果使用哈希,则他的value中只会存储他数据本身,如果不是特别在意内存,其实使用String就可以啦。
-
设计key的具体细节
所以我们可以使用String结构,就是一个简单的key,value键值对的方式,但是关于key的处理,session他是每个用户都有自己的session,但是redis的key是共享的,咱们就不能使用code了
在设计这个key的时候,我们之前讲过需要满足两点
1、key要具有唯一性
2、key要方便携带
如果我们采用phone:手机号这个的数据来存储当然是可以的,但是如果把这样的敏感数据存储到redis中并且从页面中带过来毕竟不太合适,所以我们在后台生成一个随机串token,然后让前端带来这个token就能完成我们的整体逻辑了
-
整体访问流程
当注册完成后,用户去登录会去校验用户提交的手机号和验证码,是否一致,如果一致,则根据手机号查询用户信息,不存在则新建,最后将用户数据保存到redis,并且生成token作为redis的key,当我们校验用户是否登录时,会去携带着token进行访问,从redis中取出token对应的value,判断是否存在这个数据,如果没有则拦截,如果存在则将其保存到threadLocal中,并且放行。
-
基于Redis实现短信登录
这里具体逻辑就不分析了,之前咱们已经重点分析过这个逻辑啦。
-
UserServiceImpl代码
@Override public Result login(LoginFormDTO loginForm, HttpSession session) { // 1.校验手机号 String phone = loginForm.getPhone(); if (RegexUtils.isPhoneInvalid(phone)) { // 2.如果不符合,返回错误信息 return Result.fail("手机号格式错误!"); } // 3.从redis获取验证码并校验 String cacheCode = stringRedisTemplate.opsForValue().get(LOGIN_CODE_KEY + phone); String code = loginForm.getCode(); if (cacheCode == null || !cacheCode.equals(code)) { // 不一致,报错 return Result.fail("验证码错误"); } // 4.一致,根据手机号查询用户 select * from tb_user where phone = ? User user = query().eq("phone", phone).one(); // 5.判断用户是否存在 if (user == null) { // 6.不存在,创建新用户并保存 user = createUserWithPhone(phone); } // 7.保存用户信息到 redis中 // 7.1.随机生成token,作为登录令牌 String token = UUID.randomUUID().toString(true); // 7.2.将User对象转为HashMap存储 UserDTO userDTO = BeanUtil.copyProperties(user, UserDTO.class); Map<String, Object> userMap = BeanUtil.beanToMap(userDTO, new HashMap<>(), CopyOptions.create() .setIgnoreNullValue(true) .setFieldValueEditor((fieldName, fieldValue) -> fieldValue.toString())); // 7.3.存储 String tokenKey = LOGIN_USER_KEY + token; stringRedisTemplate.opsForHash().putAll(tokenKey, userMap); // 7.4.设置token有效期 stringRedisTemplate.expire(tokenKey, LOGIN_USER_TTL, TimeUnit.MINUTES); // 8.返回token return Result.ok(token); }
-
-
解决状态登录刷新问题
-
初始方案思路总结:
在这个方案中,他确实可以使用对应路径的拦截,同时刷新登录token令牌的存活时间,但是现在这个拦截器他只是拦截需要被拦截的路径,假设当前用户访问了一些不需要拦截的路径,那么这个拦截器就不会生效,所以此时令牌刷新的动作实际上就不会执行,所以这个方案他是存在问题的
-
优化方案
既然之前的拦截器无法对不需要拦截的路径生效,那么我们可以添加一个拦截器,在第一个拦截器中拦截所有的路径,把第二个拦截器做的事情放入到第一个拦截器中,同时刷新令牌,因为第一个拦截器有了threadLocal的数据,所以此时第二个拦截器只需要判断拦截器中的user对象是否存在即可,完成整体刷新功能。
-
代码
RefreshTokenInterceptor
public class RefreshTokenInterceptor implements HandlerInterceptor { private StringRedisTemplate stringRedisTemplate; public RefreshTokenInterceptor(StringRedisTemplate stringRedisTemplate) { this.stringRedisTemplate = stringRedisTemplate; } @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { // 1.获取请求头中的token String token = request.getHeader("authorization"); if (StrUtil.isBlank(token)) { return true; } // 2.基于TOKEN获取redis中的用户 String key = LOGIN_USER_KEY + token; Map<Object, Object> userMap = stringRedisTemplate.opsForHash().entries(key); // 3.判断用户是否存在 if (userMap.isEmpty()) { return true; } // 5.将查询到的hash数据转为UserDTO UserDTO userDTO = BeanUtil.fillBeanWithMap(userMap, new UserDTO(), false); // 6.存在,保存用户信息到 ThreadLocal UserHolder.saveUser(userDTO); // 7.刷新token有效期 stringRedisTemplate.expire(key, LOGIN_USER_TTL, TimeUnit.MINUTES); // 8.放行 return true; } @Override public void afterCompletion(HttpServletRequest request, HttpServletResponse response, Object handler, Exception ex) throws Exception { // 移除用户 UserHolder.removeUser(); } }
LoginInterceptor
public class LoginInterceptor implements HandlerInterceptor { @Override public boolean preHandle(HttpServletRequest request, HttpServletResponse response, Object handler) throws Exception { // 1.判断是否需要拦截(ThreadLocal中是否有用户) if (UserHolder.getUser() == null) { // 没有,需要拦截,设置状态码 response.setStatus(401); // 拦截 return false; } // 有用户,则放行 return true; } }
-
商户查询缓存
什么是缓存?
前言:什么是缓存?
就像自行车,越野车的避震器
举个例子:越野车,山地自行车,都拥有"避震器",防止车体加速后因惯性,在酷似"U"字母的地形上飞跃,硬着陆导致的损害,像个弹簧一样;
同样,实际开发中,系统也需要"避震器",防止过高的数据访问猛冲系统,导致其操作线程无法及时处理信息而瘫痪;
这在实际开发中对企业讲,对产品口碑,用户评价都是致命的;所以企业非常重视缓存技术;
缓存(Cache),就是数据交换的缓冲区,俗称的缓存就是缓冲区内的数据,一般从数据库中获取,存储于本地代码(例如:
例1:Static final ConcurrentHashMap<K,V> map = new ConcurrentHashMap<>(); 本地用于高并发
例2:static final Cache<K,V> USER_CACHE = CacheBuilder.newBuilder().build(); 用于redis等缓存
例3:Static final Map<K,V> map = new HashMap(); 本地缓存
由于其被Static修饰,所以随着类的加载而被加载到内存之中,作为本地缓存,由于其又被final修饰,所以其引用(例3:map)和对象(例3:new HashMap())之间的关系是固定的,不能改变,因此不用担心赋值(=)导致缓存失效;
为什么要使用缓存
一句话:因为速度快,好用
缓存数据存储于代码中,而代码运行在内存中,内存的读写性能远高于磁盘,缓存可以大大降低用户访问并发量带来的服务器读写压力
实际开发过程中,企业的数据量,少则几十万,多则几千万,这么大数据量,如果没有缓存来作为"避震器",系统是几乎撑不住的,所以企业会大量运用到缓存技术;
但是缓存也会增加代码复杂度和运营的成本:
如何使用缓存
实际开发中,会构筑多级缓存来使系统运行速度进一步提升,例如:本地缓存与redis中的缓存并发使用
浏览器缓存:主要是存在于浏览器端的缓存
应用层缓存:可以分为tomcat本地缓存,比如之前提到的map,或者是使用redis作为缓存
数据库缓存:在数据库中有一片空间是 buffer pool,增改查数据都会先加载到mysql的缓存中
CPU缓存:当代计算机最大的问题是 cpu性能提升了,但内存读写速度没有跟上,所以为了适应当下的情况,增加了cpu的L1,L2,L3级的缓存
添加商户缓存
在我们查询商户信息时,我们是直接操作从数据库中去进行查询的,大致逻辑是这样,直接查询数据库那肯定慢咯,所以我们需要增加缓存
@GetMapping("/{id}")
public Result queryShopById(@PathVariable("id") Long id) {
//这里是直接查询数据库
return shopService.queryById(id);
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧
· 园子的第一款AI主题卫衣上架——"HELLO! HOW CAN I ASSIST YOU TODAY
· 【自荐】一款简洁、开源的在线白板工具 Drawnix