人生有信仰 数据有梯度 暴力不爆零


bzoj 3545/3551: [ONTAK2010]Peaks -- 主席树,最小生成树,倍增

3545: [ONTAK2010]Peaks

Time Limit: 10 Sec  Memory Limit: 128 MB

Description

在Bytemountains有N座山峰,每座山峰有他的高度h_i。有些山峰之间有双向道路相连,共M条路径,每条路径有一个困难值,这个值越大表示越难走,现在有Q组询问,每组询问询问从点v开始只经过困难值小于等于x的路径所能到达的山峰中第k高的山峰,如果无解输出-1。

 

Input

第一行三个数N,M,Q。
第二行N个数,第i个数为h_i
接下来M行,每行3个数a b c,表示从a到b有一条困难值为c的双向路径。
接下来Q行,每行三个数v x k,表示一组询问。

 

Output

对于每组询问,输出一个整数表示答案。

 

Sample Input

10 11 4
1 2 3 4 5 6 7 8 9 10
1 4 4
2 5 3
9 8 2
7 8 10
7 1 4
6 7 1
6 4 8
2 1 5
10 8 10
3 4 7
3 4 6
1 5 2
1 5 6
1 5 8
8 9 2

Sample Output

6
1
-1
8


HINT

 

【数据范围】

N<=10^5, M,Q<=5*10^5,h_i,c,x<=10^9。

 

Source

首先一定是走最小生成树上的边是最优的,然后我们按建树的顺序合并节点,这样我们发现一个子树里的边权都小于他本身

然后查询就是倍增找到当前点能到的最远的祖先,就变成了查询子树的第k大,然后用主席树维护就可以了

#include<map>
#include<cmath>
#include<queue>
#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
using namespace std;
#define inf 1000000007
#define ll long long
#define M 6000010
#define N 500010
inline int rd()
{
    int x=0,f=1;char ch=getchar();
    while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
    while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
    return x*f;
}
int n,m,Q;
int h[N];
struct qaz{int a,b,c;}e[N],tp[N];
bool cmp(qaz a,qaz b){return a.c<b.c;}
int fa[N],mz;
int findf(int x){return x==fa[x]?x:fa[x]=findf(fa[x]);}
int lj[N],fro[N],to[N],cnt;
void add(int a,int b){fro[++cnt]=lj[a];to[cnt]=b;lj[a]=cnt;}
bool vs[N];
int st[N],ed[N],tim,dep[N];
int Fa[200010][17],rt[N];
int ls[M],rs[M],sz[M],tot;
void add(int lst,int &p,int l,int r,int x)
{
    p=++tot;
    ls[p]=ls[lst];rs[p]=rs[lst];
    sz[p]=sz[lst]+1;
    if(l==r) return;
    int mid=l+r>>1;
    if(x<=mid) add(ls[lst],ls[p],l,mid,x);
    else add(rs[lst],rs[p],mid+1,r,x);
}
void dfs(int x)
{
    st[x]=++tim;vs[x]=1;
    dep[x]=dep[Fa[x][0]]+1;
    if(x<=n) add(rt[tim-1],rt[tim],1,n,h[x]);
    else rt[tim]=rt[tim-1];
    for(int i=1;i<17;i++)
    {
        if(dep[x]<(1<<i)) break;
        Fa[x][i]=Fa[Fa[x][i-1]][i-1];
    }
    for(int i=lj[x];i;i=fro[i])
    {
        Fa[to[i]][0]=x;
        dfs(to[i]);
    }
    ed[x]=tim;
}
int fd(int x,int y,int l,int r,int k)
{
    if(l==r) return tp[l].c;
    int mid=l+r>>1;
    if(sz[rs[x]]-sz[rs[y]]>=k) return fd(rs[x],rs[y],mid+1,r,k);
    else return fd(ls[x],ls[y],l,mid,k-sz[rs[x]]+sz[rs[y]]);
}
int main()
{
    mz=n=rd();m=rd();Q=rd();
    for(int i=1;i<=n;i++) tp[i].c=rd(),tp[i].a=i;
    sort(tp+1,tp+n+1,cmp);
    for(int i=1;i<=n;i++)
    {
        if(i>1&&tp[i].c==tp[i-1].c) h[tp[i].a]=h[tp[i-1].a];
        else h[tp[i].a]=i;
    }
    for(int i=1,a,b,c;i<=m;i++)
    {
        a=rd();b=rd();c=rd();
        e[i]=(qaz){a,b,c}; 
    }
    sort(e+1,e+m+1,cmp);
    for(int i=1;i<n+n;i++) fa[i]=i;
    for(int i=1,x,y;i<=m;i++)
    {
        x=findf(e[i].a);y=findf(e[i].b);
        if(x==y) continue;
        fa[x]=fa[y]=++mz;
        h[mz]=e[i].c;
        add(mz,x);add(mz,y);
        if(mz==n*2-1) break;
    }
    for(int i=1;i<=n;i++) if(!vs[i]) dfs(findf(i));
    int x,y,z,lans=-1,Rt;
    while(Q--)
    {
        x=rd();y=rd();z=rd();
        Rt=x;
        for(int i=16;i>=0;i--)
            if(dep[Rt]>(1<<i)&&h[Fa[Rt][i]]<=y)  Rt=Fa[Rt][i];
        if(sz[rt[ed[Rt]]]-sz[rt[st[Rt]-1]]<z) lans=-1;
        else lans=fd(rt[ed[Rt]],rt[st[Rt]-1],1,n,z);
        printf("%d\n",lans);
    }
    return 0;
}

 

posted @ 2017-11-22 17:43  lkhll  阅读(203)  评论(0编辑  收藏  举报