bzoj 1637: [Usaco2007 Mar]Balanced Lineup
1637: [Usaco2007 Mar]Balanced Lineup
Time Limit: 5 Sec Memory Limit: 64 MBDescription
Farmer John 决定给他的奶牛们照一张合影,他让 N (1 ≤ N ≤ 50,000) 头奶牛站成一条直线,每头牛都有它的坐标(范围: 0..1,000,000,000)和种族(0或1)。 一直以来 Farmer John 总是喜欢做一些非凡的事,当然这次照相也不例外。他只给一部分牛照相,并且这一组牛的阵容必须是“平衡的”。平衡的阵容,指的是在一组牛中,种族0和种族1的牛的数量相等。 请算出最广阔的区间,使这个区间内的牛阵容平衡。区间的大小为区间内最右边的牛的坐标减去最做边的牛的坐标。 输入中,每个种族至少有一头牛,没有两头牛的坐标相同。
Input
行 1: 一个整数: N 行 2..N + 1: 每行两个整数,为种族 ID 和 x 坐标。
Output
行 1: 一个整数,阵容平衡的最大的区间的大小。
Sample Input
7
0 11
1 10
1 25
1 12
1 4
0 13
1 22
0 11
1 10
1 25
1 12
1 4
0 13
1 22
Sample Output
11
输入说明
有7头牛,像这样在数轴上。
1 1 0 1 0 1 1
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
输出说明
牛 #1 (at 11), #4 (at 12), #6 (at 13), #7 (at 22) 组成一个平衡的最大的区间,大小为 22-11=11 个单位长度。
<-------- 平衡的 -------->
1 1 0 1 0 1 1
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
输入说明
有7头牛,像这样在数轴上。
1 1 0 1 0 1 1
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
输出说明
牛 #1 (at 11), #4 (at 12), #6 (at 13), #7 (at 22) 组成一个平衡的最大的区间,大小为 22-11=11 个单位长度。
<-------- 平衡的 -------->
1 1 0 1 0 1 1
+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+--+
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
HINT
设ID=1为1,ID=0为-1,前缀和为sum[],若(i,j)为平衡的,那么有sum[j]==sum[i-1],记录一下每一个sum出现的最早位置是哪,扫一遍即可。
#include<cstdio> #include<algorithm> #include<iostream> #define N 50050 using namespace std; int max(int a,int b){return a>b?a:b;} struct ljn{int x,y;}a[N]; bool cmp(ljn q,ljn w){return q.y<w.y;} int n,sum[N],ji[N<<1][2],ans; int main() { scanf("%d",&n); for(int i=0;i<n;i++) scanf("%d%d",&a[i].x,&a[i].y); sort(a,a+n,cmp); sum[0]=(a[0].x?1:-1); for(int i=1;i<n;i++) { sum[i]=sum[i-1]; sum[i]+=(a[i].x?1:-1); } for(int i=0;i<n;i++) ji[sum[i]+n][0]?ji[sum[i]+n][1]=i:ji[sum[i]+n][0]=i; for(int i=0;i<(n<<1);i++) if(ji[i][1]) ans=max(ans,a[ji[i][1]].y-a[ji[i][0]+1].y); printf("%d",ans); }
版权声明:本文为博主原创文章,未经博主允许不得转载。