[UOJ 300] 【CTSC2017】吉夫特

【CTSC2017】吉夫特

UOJ 300

1

题目大意

给出大小为 \(n\) 的两两互异的数组 \(a\) ,问有多少个不下降子序列满足 \(\prod_{i=2}^k \binom{a_{k-1}}{a_k} \; mod \; 2 > 0\) ,答案模 \(1000000007\)

数据范围

\(1 \le n \le 211985, 1 \le a_i \le 233333\)

时空限制

2s, 512MB

分析

由于模 \(2\) 的性质,我们要保证每个组合数都是奇数,这时我们想到与组合数有关的卢卡斯定理,得到

\[\binom {x}{y} \; mod \; 2 = \binom {\lfloor \dfrac x2 \rfloor}{\lfloor \dfrac y2 \rfloor} \times \binom {x \; mod \; 2}{y \; mod \; 2} \]

发现这就是对于二进制的每一位考虑是否满足,不能出现 \(\binom 01\) ,也就是 \(x\)\(y\) 的超集,由于 \(a\) 互异,所以我们直接枚举超集转移即可,因为 \(a_i\) 互不相等,所以时间为 $O(3^n) $

Code

#include <cstdio>
#include <iostream>
using namespace std;
inline char nc() {
	static char buf[100000], *l = buf, *r = buf;
	return l==r&&(r=(l=buf)+fread(buf,1,100000,stdin),l==r)?EOF:*l++;
}
template<class T> void read(T & x) {
	x = 0; int f = 1, ch = nc();
	while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=nc();}
	while(ch>='0'&&ch<='9'){x=x*10-'0'+ch;ch=nc();}
	x *= f;
}
const int maxn = 211985 + 5;
const int maxa = 233333 + 5;
const int mod = 1000000007;
int n, m, a[maxn];
int f[maxa];
inline void add(int & x, int y) {
	x += y;
	if(x >= mod) x -= mod;
}
int solve() {
	int re = 0;
	for(int i = 1; i <= n; ++i) {
		int x = a[i];
		for(int j = (x + 1) | x; j <= m; j = (j + 1) | x) {
			add(f[x], f[j]);
		}
		add(re, f[x]), add(f[x], 1);
	}
	return re;
}
int main() {
//	freopen("testdata.in", "r", stdin);
	read(n);
	for(int i = 1; i <= n; ++i) {
		read(a[i]), m = max(m, a[i]);
	}
	printf("%d\n", solve());
	return 0;
}
posted @ 2019-01-15 22:50  LJZ_C  阅读(163)  评论(0编辑  收藏  举报