[loj 2587] 「APIO2018」铁人两项
「APIO2018」铁人两项
题目大意
给出一个 \(n\) 个点,\(m\) 条边的无向图,问存在多少个互异三元组 \((s, c, f)\) 满足存在两条分别从 \(s\) 到 \(c\) ,\(c\) 到 \(f\) ,且点不重复的路径
数据范围
\(n \le 100000, m \le 200000\)
时空限制
1000ms, 1024MB
分析
圆方树模板题
考虑对于一对 \((s, f)\) ,所有可能的 \(c\) 就是它们路径上点双里的点,而且不算 \(s\) ,\(f\) ,建出圆方树,考虑路径上一个点双的贡献是它的大小,而割点会重复统计,所以让圆方树上圆点贡献为 \(-1\) ,方点贡献为它的 \(size\) 那么一个点的计算次数就是通过它的圆点对数,树形DP即可
总结
最开始想的是枚举 \(c\) 算贡献,所以发现不可做时要更换思路啊...
Code
#include <cstdio>
#include <cstring>
#include <iostream>
#include <vector>
using namespace std;
inline char nc()
{
static char buf[100000], * l = buf, * r = buf;
if (l == r) r = (l = buf) + fread(buf, 1, 100000, stdin);
if (l == r) return EOF;
return *l++;
}
template<class T> void read(T & x)
{
x = 0; int f = 1, ch = nc();
while (!isdigit(ch))
{
if (ch == '-') f = -1;
ch = nc();
}
while (isdigit(ch))
{
x = x * 10 - '0' + ch;
ch = nc();
}
x *= f;
}
typedef long long ll;
const int maxn = 100000 + 5;
const int maxm = 200000 + 5;
const int maxe = maxm * 2;
const int maxnode = maxn * 2;
int n, m;
struct edge
{
int to, nex;
edge(int to = 0, int nex = 0) : to(to), nex(nex) {}
} g[maxe];
int head[maxn];
int ecnt;
vector<int> adj[maxnode];
inline void addedge(int u, int v)
{
g[ecnt] = edge(v, head[u]), head[u] = ecnt++;
g[ecnt] = edge(u, head[v]), head[v] = ecnt++;
}
inline void adde(int u, int v)
{
adj[u].push_back(v);
adj[v].push_back(u);
}
int dfc, dfn[maxn], low[maxn];
int top, sta[maxn];
int bcnt;
int bccsiz[maxn];
int val[maxnode];
int siz[maxnode];
void tarjan(int u, int fa)
{
low[u] = dfn[u] = ++dfc;
sta[++top] = u;
siz[u] = 1;
for(int i = head[u]; ~ i; i = g[i].nex)
{
int v = g[i].to;
if(v != fa)
{
if(!dfn[v])
{
tarjan(v, u);
low[u] = min(low[u], low[v]);
if(low[v] >= dfn[u])
{
bcnt++;
adde(n + bcnt, u);
bccsiz[bcnt] = 1;
while(true)
{
int x = sta[top--];
adde(n + bcnt, x);
bccsiz[bcnt]++;
siz[bcnt + n] += siz[x];
if(x == v) break;
}
siz[u] += siz[bcnt + n];
val[bcnt + n] = bccsiz[bcnt];
}
}
else low[u] = min(low[u], dfn[v]);
}
}
}
int all;
ll an;
void dfs(int u, int fa)
{
ll re = (ll)(all - siz[u]) * siz[u] * 2;
int t = int(u <= n);
for(unsigned int i = 0; i < adj[u].size(); ++i)
{
int v = adj[u][i];
if(v != fa)
{
dfs(v, u);
re += (ll)t * siz[v] * 2;
t += siz[v];
}
}
an += re * val[u];
}
void solve()
{
for(int i = 1; i <= n; ++i)
{
val[i] = -1;
}
for(int i = 1; i <= n; ++i) if(!dfn[i])
{
tarjan(i, -1);
all = siz[i], dfs(i, -1);
}
cout << an << endl;
}
int main()
{
// freopen("testdata.in", "r", stdin);
read(n), read(m);
memset(head, -1, sizeof(head));
for(int i = 1; i <= m; ++i)
{
int u, v; read(u), read(v);
addedge(u, v);
}
solve();
return 0;
}