06 2022 档案
摘要:在机器学习中,我们通常把样本分为训练集和测试集,训练集用于训练模型,测试集用于评估模型。在样本划分和模型验证的过程中,存在着不同的抽样方法和验证方法。 1)Holdout检验Holdout 检验是最简单也是最直接的验证方法,它将原始的样本集合随机划分成训练集和验证集两部分。比方说,对于一个点击率预测
阅读全文
摘要:插补: 1、特殊值填充(Treating Missing Attribute values as Special values) 将空值作为一种特殊的属性值来处理,它不同于其他的任何属性值。如所有的空值都用“unknown”填充。一般作为临时填充或中间过程。有时可能导致严重的数据偏离,一般不推荐。
阅读全文
摘要:在机器学习算法中,对于很多监督学习模型,需要对原始的模型构建损失函数,之后通过优化算法对损失函数进行优化,寻找到最优的参数。求解机器学习参数的优化算法中,使用较多的是基于梯度下降的优化算法(Gradient Descent, GD),梯度下降法的含义是通过当前点的梯度方向寻找到新的迭代点。基本思想可
阅读全文
摘要:参考: https://zhuanlan.zhihu.com/p/86602524
阅读全文
摘要:参考: https://zhuanlan.zhihu.com/p/38200980 https://blog.csdn.net/songyunli1111/article/details/89071021
阅读全文
摘要:参考: https://www.sohu.com/a/317862976_654419
阅读全文
摘要:激活函数的主要作用是提供网络的非线性建模能力,如果没有激活函数,那么该网络仅能够表达线性映射,即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。 Sigmoid Sigmoid函数的导数是其本身的函数,即f′(x)=f(x)(1−f(x)),计算非常方便,也非常节省计算时间。 具有这种性质的称
阅读全文