svm、logistic regression对比
相同点:都是线性分类算法
不同点:
1、损失函数不同
LR:基于“给定x和参数,y服从二项分布”的假设,由极大似然估计推导
SVM: hinge loss + L2 regularization的标准表示,基于几何间隔最大化原理推导
$\sum^N_{i=1}[1 - y_i(w*x_i + b)]_+ + \lambda ||w||^2$
2、支持向量机只考虑局部的间隔边界附近的点,而逻辑回归考虑全局(远离的点对边界线的确定也起作用)。支持向量机改变非支持向量样本并不会引起分离超平面的变化
3、SVM的损失函数自带正则(损失函数中的1/2||w||^2项),这就是为什么SVM是结构风险最小化算法的原因!!!而LR必须另外在损失函数上添加正则项!!!结构风险最小化,意思就是在训练误差和模型复杂度之间寻求平衡,防止过拟合。
4、优化方法:LR一般基于梯度下降法, SVM基于SMO
5、对于非线性可分问题,SVM的扩展性比LR强
如何选择两个模型?
假设: n = 特征数量,m = 训练样本数量
1)如果n相对于m更大,比如 n = 10,000,m = 1,000,则使用lr
理由:特征数相对于训练样本数已经够大了,使用线性模型就能取得不错的效果,不需要过于复杂的模型;
2)如果n较小,m比较大,比如n = 10,m = 10,000,则使用SVM(高斯核函数)
理由:在训练样本数量足够大而特征数较小的情况下,可以通过使用复杂核函数的SVM来获得更好的预测性能,而且因为训练样本数量并没有达到百万级,使用复杂核函数的SVM也不会导致运算过慢;
3)如果n较小,m非常大,比如n = 100, m = 500,000,则应该引入/创造更多的特征,然后使用lr或者线性核函数的SVM
理由:因为训练样本数量特别大,使用复杂核函数的SVM会导致运算很慢,因此应该考虑通过引入更多特征,然后使用线性核函数的SVM或者lr来构建预测性更好的模型。