c++多线程编程:常见面试题

题目:子线程循环 10 次,接着主线程循环 100 次,接着又回到子线程循环 10 次,接着再回到主线程又循环 100 次,如此循环50次,试写出代码

子线程与主线程必有一个满足条件(flag == num),不满足条件的那个线程不可能获取unique_lock(会在wait中释放),只有满足条件的线程才能获取锁,执行程序

mutex m;//保护条件的互斥访问
condition_variable cond;//条件变量
int flag = 10;//条件
void fun(int num) {
    for (int i = 0; i<50; i++) {
        unique_lock<mutex> lk(m);//A unique lock is an object that manages a mutex object with unique ownership in both states: locked and unlocked.  
        while (flag != num)
            cond.wait(lk);//在调用wait时会执行lk.unlock()  
        for (int j = 0; j<num; j++)
            cout << j << " ";
        cout << endl;
        flag = (num == 10) ? 100 : 10;
        cond.notify_one();//被阻塞的线程唤醒后lk.lock()恢复在调用wait前的状态  
    }
}
int main() {
    thread child(fun, 10);
    fun(100);
    child.join();
    
    system("pause");
    return 0;
}

题目:编写一个程序,开启3个线程,这3个线程的ID分别为A、B、C,每个线程将自己的ID在屏幕上打印10遍,要求输出结果必须按ABC的顺序显示;如:ABCABC….依次递推。

mutex m;
condition_variable cond;
int loop = 10;
int flag = 0;

void func(int id)
{
    for (int i = 0; i < loop; ++i)
    {
        unique_lock<mutex> lk(m);
        while (flag != id)
            cond.wait(lk);
        cout << static_cast<char>('A' + id) << " ";
        flag = (flag + 1) % 3;
        cond.notify_all();
    }
}

void main()
{
    thread A(func, 0);
    thread B(func, 1);
    func(2);
    cout << endl;

    A.join();
    B.join();

    system("pause");
}

题目(google笔试题):有四个线程1、2、3、4。线程1的功能就是输出1,线程2的功能就是输出2,以此类推.........现在有四个文件ABCD。初始都为空。现要让四个文件呈如下格式:
A:1 2 3 4 1 2....
B:2 3 4 1 2 3....
C:3 4 1 2 3 4....

D:4 1 2 3 4 1....

mutex m;
condition_variable cond;
int loop = 10;
int flag;

void func(int num)
{
    for (int i = 0; i < loop; ++i)
    {
        unique_lock<mutex> lk(m);
        while (num != flag)
            cond.wait(lk);
        cout << num + 1 << " ";
        flag = (flag + 1) % 4;
        cond.notify_all();
    }
}

void main(int argc,char *argv[])
{
    flag = atoi(argv[1]);
    thread one(func, 1);
    thread two(func, 2);
    thread three(func, 3);
    func(0);
    one.join();
    two.join();
    three.join();
    cout << endl;

    system("pause");
}

读者写者问题

这也是一个非常经典的多线程题目,题目大意如下:有一个写者很多读者,多个读者可以同时读文件,但写者在写文件时不允许有读者在读文件,同样有读者读时写者也不能写。

class rwlock {
private:
    mutex _lock;
    condition_variable _wcon, _rcon;
    unsigned _writer, _reader;
    int _active;
public:
    void read_lock() {
        unique_lock<mutex> lock(_lock);
        ++_reader;
        while (_active < 0 || _writer > 0)
            _rcon.wait(lock);
        --_reader;
        ++_active;
    }
    void write_lock() {
        unique_lock<mutex> lock(_lock);
        ++_writer;
        while (_active != 0)
            _wcon.wait(lock);
        --_writer;
        _active = -1;
    }
    void unlock() {
        unique_lock<mutex> lock(_lock);
        if (_active > 0) {
            --_active;
            if (_active == 0) _wcon.notify_one();
        }
        else {
            _active = 0;
            if (_writer > 0) _wcon.notify_one();
            else if (_reader > 0) _rcon.notify_all();
        }

    }
    rwlock() :_writer(0), _reader(0), _active(0) {
    }
};

void t1(rwlock* rwl) {
    while (1) {
        cout << "I want to write." << endl;
        rwl->write_lock();
        cout << "writing..." << endl;
        this_thread::sleep_for(chrono::seconds(5));
        rwl->unlock();
        this_thread::sleep_for(chrono::seconds(5));
    }
}

void t2(rwlock* rwl) {
    while (1) {
        cout << "t2-I want to read." << endl;
        rwl->read_lock();
        cout << "t2-reading..." << endl;
        this_thread::sleep_for(chrono::seconds(1));
        rwl->unlock();
    }
}

void t3(rwlock* rwl) {
    while (1) {
        cout << "t3-I want to read." << endl;
        rwl->read_lock();
        cout << "t3-reading..." << endl;
        this_thread::sleep_for(chrono::seconds(1));
        rwl->unlock();
    }
}

int main()
{
    rwlock* rwl = new rwlock();
    thread th1(t1, rwl);
    thread th2(t2, rwl);
    thread th3(t3, rwl);
    th1.join();
    th2.join();
    th3.join();

    system("pause");
    return 0;
}

 

线程安全的queue

STL中的queue是非线程安全的,一个组合操作:front(); pop()先读取队首元素然后删除队首元素,若是有多个线程执行这个组合操作的话,可能会发生执行序列交替执行,导致一些意想不到的行为。因此需要重新设计线程安全的queue的接口。

template<typename T>
class threadsafe_queue
{
private:
    mutable std::mutex mut;
    std::queue<T> data_queue;
    std::condition_variable data_cond;
public:
    threadsafe_queue() {}
    threadsafe_queue(threadsafe_queue const& other)
    {
        std::lock_guard<std::mutex> lk(other.mut);
        data_queue = other.data_queue;
    }
    void push(T new_value)//入队操作  
    {
        std::lock_guard<std::mutex> lk(mut);
        data_queue.push(new_value);
        data_cond.notify_one();
    }
    void wait_and_pop(T& value)//直到有元素可以删除为止  
    {
        std::unique_lock<std::mutex> lk(mut);
        data_cond.wait(lk, [this] {return !data_queue.empty(); });
        value = data_queue.front();
        data_queue.pop();
    }
    std::shared_ptr<T> wait_and_pop()
    {
        std::unique_lock<std::mutex> lk(mut);
        data_cond.wait(lk, [this] {return !data_queue.empty(); });
        std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));
        data_queue.pop();
        return res;
    }
    bool try_pop(T& value)//不管有没有队首元素直接返回  
    {
        std::lock_guard<std::mutex> lk(mut);
        if (data_queue.empty())
            return false;
        value = data_queue.front();
        data_queue.pop();
        return true;
    }
    std::shared_ptr<T> try_pop()
    {
        std::lock_guard<std::mutex> lk(mut);
        if (data_queue.empty())
            return std::shared_ptr<T>();
        std::shared_ptr<T> res(std::make_shared<T>(data_queue.front()));
        data_queue.pop();
        return res;
    }
    bool empty() const
    {
        std::lock_guard<std::mutex> lk(mut);
        return data_queue.empty();
    }
};

题目:编写程序完成如下功能:

1)有一int型全局变量g_Flag初始值为0

2) 在主线称中起动线程1,打印“this is thread1”,并将g_Flag设置为1

3) 在主线称中启动线程2,打印“this is thread2”,并将g_Flag设置为2

4) 线程序1需要在线程2退出后才能退出

5) 主线程在检测到g_Flag从1变为2,或者从2变为1的时候退出

atomic<int> flag(0);

void worker1(future<int> fut) 
{//线程1  
    printf("this is thread1\n");
    flag = 1;
    fut.get();//线程1阻塞至线程2设置共享状态  get等待异步操作结束并返回结果
    printf("thread1 exit\n");
}

void worker2(promise<int> prom) 
{//线程2  
    printf("this is thread2\n");//C++11的线程输出cout没有boost的好,还是会出现乱序,所以采用printf,有点不爽  
    flag = 2;
    prom.set_value(10);//线程2设置了共享状态后,线程1才会被唤醒  
    printf("thread2 exit\n");
}

//利用promise future来控制线程退出的次序
int main()
{
    promise<int> prom;
    future<int> fut = prom.get_future();
    thread one(worker1, move(fut));//注意future和promise不允许拷贝,但是具备move语义  
    thread two(worker2, move(prom));
    while (flag.load() == 0);
  ///将本线程从调用线程中分离出来,允许本线程独立执行 one.detach(); two.detach();
//exit(1);//主线程到这里退出 printf("main thread exit\n"); system("pause"); return 0; }

 

 

 

 

 

 

 

 

 

 

http://blog.csdn.net/liuxuejiang158blog/article/details/22300081

 

posted @ 2016-10-11 18:50  合唱团abc  阅读(35128)  评论(2编辑  收藏  举报