c++多线程编程:常见面试题
题目:子线程循环 10 次,接着主线程循环 100 次,接着又回到子线程循环 10 次,接着再回到主线程又循环 100 次,如此循环50次,试写出代码
子线程与主线程必有一个满足条件(flag == num),不满足条件的那个线程不可能获取unique_lock(会在wait中释放),只有满足条件的线程才能获取锁,执行程序
mutex m;//保护条件的互斥访问 condition_variable cond;//条件变量 int flag = 10;//条件 void fun(int num) { for (int i = 0; i<50; i++) { unique_lock<mutex> lk(m);//A unique lock is an object that manages a mutex object with unique ownership in both states: locked and unlocked. while (flag != num) cond.wait(lk);//在调用wait时会执行lk.unlock() for (int j = 0; j<num; j++) cout << j << " "; cout << endl; flag = (num == 10) ? 100 : 10; cond.notify_one();//被阻塞的线程唤醒后lk.lock()恢复在调用wait前的状态 } } int main() { thread child(fun, 10); fun(100); child.join(); system("pause"); return 0; }
题目:编写一个程序,开启3个线程,这3个线程的ID分别为A、B、C,每个线程将自己的ID在屏幕上打印10遍,要求输出结果必须按ABC的顺序显示;如:ABCABC….依次递推。
mutex m; condition_variable cond; int loop = 10; int flag = 0; void func(int id) { for (int i = 0; i < loop; ++i) { unique_lock<mutex> lk(m); while (flag != id) cond.wait(lk); cout << static_cast<char>('A' + id) << " "; flag = (flag + 1) % 3; cond.notify_all(); } } void main() { thread A(func, 0); thread B(func, 1); func(2); cout << endl; A.join(); B.join(); system("pause"); }
题目(google笔试题):有四个线程1、2、3、4。线程1的功能就是输出1,线程2的功能就是输出2,以此类推.........现在有四个文件ABCD。初始都为空。现要让四个文件呈如下格式:
A:1 2 3 4 1 2....
B:2 3 4 1 2 3....
C:3 4 1 2 3 4....
D:4 1 2 3 4 1....
mutex m; condition_variable cond; int loop = 10; int flag; void func(int num) { for (int i = 0; i < loop; ++i) { unique_lock<mutex> lk(m); while (num != flag) cond.wait(lk); cout << num + 1 << " "; flag = (flag + 1) % 4; cond.notify_all(); } } void main(int argc,char *argv[]) { flag = atoi(argv[1]); thread one(func, 1); thread two(func, 2); thread three(func, 3); func(0); one.join(); two.join(); three.join(); cout << endl; system("pause"); }
读者写者问题
这也是一个非常经典的多线程题目,题目大意如下:有一个写者很多读者,多个读者可以同时读文件,但写者在写文件时不允许有读者在读文件,同样有读者读时写者也不能写。
class rwlock { private: mutex _lock; condition_variable _wcon, _rcon; unsigned _writer, _reader; int _active; public: void read_lock() { unique_lock<mutex> lock(_lock); ++_reader; while (_active < 0 || _writer > 0) _rcon.wait(lock); --_reader; ++_active; } void write_lock() { unique_lock<mutex> lock(_lock); ++_writer; while (_active != 0) _wcon.wait(lock); --_writer; _active = -1; } void unlock() { unique_lock<mutex> lock(_lock); if (_active > 0) { --_active; if (_active == 0) _wcon.notify_one(); } else { _active = 0; if (_writer > 0) _wcon.notify_one(); else if (_reader > 0) _rcon.notify_all(); } } rwlock() :_writer(0), _reader(0), _active(0) { } }; void t1(rwlock* rwl) { while (1) { cout << "I want to write." << endl; rwl->write_lock(); cout << "writing..." << endl; this_thread::sleep_for(chrono::seconds(5)); rwl->unlock(); this_thread::sleep_for(chrono::seconds(5)); } } void t2(rwlock* rwl) { while (1) { cout << "t2-I want to read." << endl; rwl->read_lock(); cout << "t2-reading..." << endl; this_thread::sleep_for(chrono::seconds(1)); rwl->unlock(); } } void t3(rwlock* rwl) { while (1) { cout << "t3-I want to read." << endl; rwl->read_lock(); cout << "t3-reading..." << endl; this_thread::sleep_for(chrono::seconds(1)); rwl->unlock(); } } int main() { rwlock* rwl = new rwlock(); thread th1(t1, rwl); thread th2(t2, rwl); thread th3(t3, rwl); th1.join(); th2.join(); th3.join(); system("pause"); return 0; }
线程安全的queue
STL中的queue是非线程安全的,一个组合操作:front(); pop()先读取队首元素然后删除队首元素,若是有多个线程执行这个组合操作的话,可能会发生执行序列交替执行,导致一些意想不到的行为。因此需要重新设计线程安全的queue的接口。
template<typename T> class threadsafe_queue { private: mutable std::mutex mut; std::queue<T> data_queue; std::condition_variable data_cond; public: threadsafe_queue() {} threadsafe_queue(threadsafe_queue const& other) { std::lock_guard<std::mutex> lk(other.mut); data_queue = other.data_queue; } void push(T new_value)//入队操作 { std::lock_guard<std::mutex> lk(mut); data_queue.push(new_value); data_cond.notify_one(); } void wait_and_pop(T& value)//直到有元素可以删除为止 { std::unique_lock<std::mutex> lk(mut); data_cond.wait(lk, [this] {return !data_queue.empty(); }); value = data_queue.front(); data_queue.pop(); } std::shared_ptr<T> wait_and_pop() { std::unique_lock<std::mutex> lk(mut); data_cond.wait(lk, [this] {return !data_queue.empty(); }); std::shared_ptr<T> res(std::make_shared<T>(data_queue.front())); data_queue.pop(); return res; } bool try_pop(T& value)//不管有没有队首元素直接返回 { std::lock_guard<std::mutex> lk(mut); if (data_queue.empty()) return false; value = data_queue.front(); data_queue.pop(); return true; } std::shared_ptr<T> try_pop() { std::lock_guard<std::mutex> lk(mut); if (data_queue.empty()) return std::shared_ptr<T>(); std::shared_ptr<T> res(std::make_shared<T>(data_queue.front())); data_queue.pop(); return res; } bool empty() const { std::lock_guard<std::mutex> lk(mut); return data_queue.empty(); } };
题目:编写程序完成如下功能:
1)有一int型全局变量g_Flag初始值为0
2) 在主线称中起动线程1,打印“this is thread1”,并将g_Flag设置为1
3) 在主线称中启动线程2,打印“this is thread2”,并将g_Flag设置为2
4) 线程序1需要在线程2退出后才能退出
5) 主线程在检测到g_Flag从1变为2,或者从2变为1的时候退出
atomic<int> flag(0); void worker1(future<int> fut) {//线程1 printf("this is thread1\n"); flag = 1; fut.get();//线程1阻塞至线程2设置共享状态 get等待异步操作结束并返回结果 printf("thread1 exit\n"); } void worker2(promise<int> prom) {//线程2 printf("this is thread2\n");//C++11的线程输出cout没有boost的好,还是会出现乱序,所以采用printf,有点不爽 flag = 2; prom.set_value(10);//线程2设置了共享状态后,线程1才会被唤醒 printf("thread2 exit\n"); } //利用promise future来控制线程退出的次序 int main() { promise<int> prom; future<int> fut = prom.get_future(); thread one(worker1, move(fut));//注意future和promise不允许拷贝,但是具备move语义 thread two(worker2, move(prom)); while (flag.load() == 0);
///将本线程从调用线程中分离出来,允许本线程独立执行 one.detach(); two.detach(); //exit(1);//主线程到这里退出 printf("main thread exit\n"); system("pause"); return 0; }
http://blog.csdn.net/liuxuejiang158blog/article/details/22300081