6、激活函数
激活函数的主要作用是提供网络的非线性建模能力,如果没有激活函数,那么该网络仅能够表达线性映射,即便有再多的隐藏层,其整个网络跟单层神经网络也是等价的。
Sigmoid
Sigmoid函数的导数是其本身的函数,即f′(x)=f(x)(1−f(x)),计算非常方便,也非常节省计算时间。
具有这种性质的称为软饱和激活函数。具体的,饱和又可分为左饱和与右饱和。与软饱和对应的是硬饱和, 即 f′(x)=0,当|x|>c,其中c为常数。
一旦输入落入饱和区,f′(x)f′(x) 就会变得接近于0,导致了向底层传递的梯度也变得非常小。此时,网络参数很难得到有效训练。这种现象被称为梯度消失。
此外,sigmoid函数的输出均大于0,使得输出不是0均值,这称为偏移现象,这会导致后一层的神经元将得到上一层输出的非0均值的信号作为输入。
tanh
RELU
当x<0时,ReLU硬饱和,而当x>0时,则不存在饱和问题。所以,ReLU 能够在x>0时保持梯度不衰减,从而缓解梯度消失问题。
然而,随着训练的推进,部分输入会落入硬饱和区,导致对应权重无法更新。这种现象被称为“神经元死亡”。针对在x<0的硬饱和问题,Leaky-ReLU对ReLU做出相应的改进,使得