机器学习八股文-1

作者:穆文
链接:https://www.zhihu.com/question/62482926/answer/233521233
来源:知乎
著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。

  • 过拟合欠拟合(举几个例子让判断下,顺便问问交叉验证的目的、超参数搜索方法、EarlyStopping)、L1正则和L2正则的做法、正则化背后的思想(顺便问问BatchNorm、Covariance Shift)、L1正则产生稀疏解原理、逻辑回归为何线性模型(顺便问问LR如何解决低维不可分、从图模型角度看LR和朴素贝叶斯和无监督)、几种参数估计方法MLE/MAP/贝叶斯的联系和区别、简单说下SVM的支持向量(顺便问问KKT条件、为何对偶、核的通俗理解)、 GBDT随机森林能否并行(顺便问问bagging boosting)、 生成模型判别模型举个例子、聚类方法的掌握(顺便问问Kmeans的EM推导思路、谱聚类和Graph-cut的理解)、梯度下降类方法和牛顿类方法的区别(顺便问问Adam、L-BFGS的思路)、半监督的思想(顺便问问一些特定半监督算法是如何利用无标签数据的、从MAP角度看半监督)、常见的分类模型的评价指标(顺便问问交叉熵、ROC如何绘制、AUC的物理含义、类别不均衡样本)
  • CNN中卷积操作和卷积核作用、maxpooling作用、卷积层与全连接层的联系、梯度爆炸和消失的概念(顺便问问神经网络权值初始化的方法、为何能减缓梯度爆炸消失、CNN中有哪些解决办法、LSTM如何解决的、如何梯度裁剪、dropout如何用在RNN系列网络中、dropout防止过拟合)、为何卷积可以用在图像/语音/语句上(顺便问问channel在不同类型数据源中的含义)
  • 如果面试者跟我一样做NLP、推荐系统,我会继续追问 CRF跟逻辑回归 最大熵模型的关系、CRF的优化方法、CRF和MRF的联系、HMM和CRF的关系(顺便问问 朴素贝叶斯和HMM的联系、LSTM+CRF 用于序列标注的原理、CRF的点函数和边函数、CRF的经验分布)、WordEmbedding的几种常用方法和原理(顺便问问language model、perplexity评价指标、word2vec跟Glove的异同)、topic model说一说、为何CNN能用在文本分类、syntactic和semantic问题举例、常见Sentence embedding方法、注意力机制(顺便问问注意力机制的几种不同情形、为何引入、seq2seq原理)、序列标注的评价指标、语义消歧的做法、常见的跟word有关的特征、factorization machine、常见矩阵分解模型、如何把分类模型用于商品推荐(包括数据集划分、模型验证等)、序列学习、wide&deep model(顺便问问为何wide和deep)
posted @ 2021-08-19 19:33  合唱团abc  阅读(355)  评论(0编辑  收藏  举报