递归与分治策略

一,分治策略与递归

  分治策略:是将规模比较大的问题分割成规模较小的相同问题,问题不变,规模变小。

  递归:若一个函数直接的或间接的调用自己,则称则个函数是递归函数。

  接下来比较下解决相同的问题,使用递归和分治算法各需要的时间复杂度和空间复杂度。

public static int digiu(int n){//递归运算
        if (n<=1){
            return 1;
        }else {
            return digiu(n-1)*n;
        }
    }

 

时间复杂度:O(n)  空间复杂度:S(n)

  通过观察上述代码可知,随着变量n的值不断的变大,所需要递归调用的次数就越多,因此需要开辟的栈帧就越多,所以空间复杂度位S(n)。

  递归调用与普通的函数调用一样,每当调用发生时,就要分配新的栈帧,而与普通的函数调用不同的是,由于递推的过程是一个逐层调用的过程,因此存在一个逐层连续的分配栈帧过程,直到遇到递归终止条件时,才开始回归,这时才逐层释放栈帧空间,返回到上一层,直到最后返回到主调函数。

  在递归调用时,如果没有终止条件,考虑下函数会不会一直递归下去?答案是不会,因为递归调用时,会不断的往栈中压入栈帧,而栈内存默认大小只有10MB,当递归调用的过程中,栈内存一旦满就会报栈溢出的异常,这时候递归也就会停止。

 public static int fun(int n){//分治策略算法
        int sum=0;
        for (int i = 0; i <n; i++) {
            sum=sum*i;
        }
        return sum;
    }

 

时间复杂度:O(n)  空间复杂度:S(1)

使用分治策略时,在代码执行的过程中始终只调用了一个方法,因此只开辟了一个栈帧,所以空间复杂度就为S(1)。

1.实例

1.有一个整形数组,数值无序,使用循环和递归完成查询。

public class digiu {
    public static int fun(int[] arr,int val){
        int pos=-1;
        for (int i = 0; i <arr.length; i++) {
            if (val==arr[i]){
                pos=i;
            }
        }
        return pos;
    }
    public static int digiu(int[] arr,int val,int num){
        if(num>=0&&arr[num]==val){
            return num;
        }
        return digiu(arr,val,num-1);//注意先递归在打印的区别
    }
    public static void main(String[] args) {
        int[] arr={1,8,3,9,0};
        System.out.println(fun(arr,1));
        System.out.println(digiu(arr,0,arr.length-1));
    }
}

2.二分查找。

public class partFind {
    public static int whilefind(int[] arr,int val){//5  6  7  10
        int right=0;
        int left=arr.length-1;
        while (right<=left){
            int mid=(right+left)/2;//当范围数值过大可以采用:mid=left+(right-left)/2    0.618
            if (val==arr[mid]){
                while (mid>0&&arr[mid-1]==val) --mid;//如果数组中存在相同元素,且要求返回的是最右边值的下标
                return mid;
            }
            if (val<arr[mid]){
                left=mid-1;
            }
            if (val>arr[mid]){
                right=mid+1;
            }
        }
        return -1;
    }
    public static void main(String[] args) {
        int[] arr={12,12,23,23,23,34,45,56};
        System.out.println(whilefind(arr,12));
    }
}

 3.给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将被按顺序插入的位置。

(反复计算可知,如果该数组中存在该数,一般在mid处就可返回,如果不存在,则可以用left的值作为可插入下标返回)

public class digiu1_3 {
  //为了方便判断返回的下标是该数在数组中的位置,还是没有找到该数返回的应插入的下标。
  //所以就使用IndexNode类型,当返回的值的flag为true,表明找到该值,当flag为false,表明没有找到该值,返回的只是应插入的位置
static class IndexNode{ int value; boolean flag; }
private static IndexNode FindValue(int[] arr,int value) { int left=0; int right=arr.length-1; IndexNode indexNode=new IndexNode(); while (left<=right){ int mid=(right-left)/2+left;//(right+left)/2 if(value==arr[mid]){ indexNode.flag=true; indexNode.value=mid; return indexNode; }else if (value<arr[mid]){ right=mid-1; }else if(value>arr[mid]){ left=mid+1; } } indexNode.flag=false; indexNode.value=left; return indexNode; } public static void main(String[] args) { int[] arr=new int[]{12,23,34,45,56,67,78,85,92,100}; IndexNode indexNode=FindValue(arr,10); System.out.println(indexNode.flag+" "+indexNode.value); } }

4.贪吃的小明

  小明的父母要出差N天,走之前给小明留下了M块奶糖,小明决定每天吃的奶糖数量不少于前一天吃的一半,但是他又不想在父母回来之前的某一天没有奶糖吃,请问他第一天最多可以吃多少块?

思路:1.因为要保证第一天吃的最多,所以就要保证后面每天吃的刚好为前一天的一半,但也要注意不能吃一半!!

public class digui1_4 {
    private static int EatMax(int day, int number) {
        int day1=(number+2)/2; //第一天要吃的糖的量,
        //第一天为什么是从对半开始???
        int sum=day1;//累计吃的糖数
        int eatday=sum;//每天要吃的量
        while (true){
            for (int i = 1; i <day; i++) {
                sum=sum+((eatday+1)/2);//加一是为解决每天吃半块糖的情况
                eatday=eatday/2;//每经过一天,吃的糖数量就会减半
            }
            if(sum<=number){
                break;
            }
            if(sum>number){//表示给第一天分的太多
                day1=day1-1;
            }
        }
        return day1;
    }
    public static void main(String[] args) {
        int day=2;
        int num=15;
        int day1=EatMax(day,num);
        System.out.println("第一天最多吃:"+day1);
    }
}

5.旋转数组

  寻找旋转数组排序中的最小值,然会返回它的下标,假如:数组{10,11,12,13,14,15,16,17}发生旋转变为{14,15,16,17,10,11,12,13};可以看出10,11,12,13部分发生了旋转,且10为旋转中的最小值,假设数组中不存在重复元素。

public class digui1_5 {
    public static int findMin(int[] arr){
        int left=0;
        int right=arr.length-1;
        while (left<right-1){//因为如果有旋转发生,那么一定为最后两个数中右边的那一个
            int mid=(right-left)/2+left;
            if(arr[left]>arr[mid]){//最左边如果大于中间值,说明旋转的范围在前半部分
                right=mid;
            }else if (arr[right]<arr[mid]){//如果最右边值小于中间值,说明旋转的部分在后半部分
                left=mid;
            }else{//如果最左边不大于中间值,且最右遍不小于中间值,说明此序列中没有发生旋转
return -1; } } return right; } public static void main(String[] args) { int[] arr=new int[]{14,15,16,17,10,11,12,13}; // 0 1 2 3 4 5 6 7 System.out.println(findMin(arr)); } }

6.计算两个数的最大公约数(1,遍历法  2,辗转相除法  3,直接使用库中函数)

public class digui1_6 {
    public static void main(String[] args) {
        int value1=15;
        int value2=15;
        //1.遍历法
        fun1(value1,value2);
        //2.辗转相除法
        System.out.println(fun2(value1,value2));
        //3.直接使用库中的函数
        fun3(value1,value2);
    }
    private static void fun1(int value1, int value2) {
        int a=value1;//无需区分大小,因为在do中进行一次之后,a就始终为大值,b始终为小值
        int b=value2;
        int r=-1;
        do{
            r=a;
            a=b;
            b=r%b;
        }while (b!=0);
        System.out.println("最大公约数为:"+a);
    }
    private static int fun2(int value1, int value2) {
        if(value1==value2){
            return value1;
        }
        if (value1==0||value2==0){//当两个数中有一个数为0时,最大公约数为非0数
            return value1==0?value2:value1;
        }
        int n=value1<value2?value1:value2;//找出较小的一个,使用穷举法
        for (;n>0;--n) {
            if(value1%n==0&&value2%n==0){
                break;
            }
        }
        return n;
    }
    private static void fun3(int value1, int value2) {
        BigInteger num1=new BigInteger(String.valueOf(value1));
        BigInteger num2=new BigInteger(String.valueOf(value2));
        BigInteger num3=num1.gcd(num2);
        System.out.println("最大公约数:"+num3);
    }
}

7.将一个整数反向输出。如:12345,输出之后为54321

public class digui1_7 {
    public static void main(String[] args) {
        int value=12345;
        fun(value);
    }
    private static void fun(int value) {
        while (value!=0){
            int n=value%10;
            value=value/10;
            System.out.print(n);
        }
    }
}
/*
 *下面是递归形式
 */
public class digui1_7 {
    public static void main(String[] args) {
        int value=12345;
        fun(value);
    }
    private static void fun(int value) {
        if(value==0){
            return;
        }
        int n=value%10;
        System.out.print(n);
        fun(value/10);
    }
}

 

posted @ 2020-04-25 21:57  小L要努力吖  阅读(378)  评论(0编辑  收藏  举报