BZOJ3668/UOJ2 [NOI2014]起床困难综合症

本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。

 

 

本文作者:ljh2000 
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!

 

Description

21 世纪,许多人得了一种奇怪的病:起床困难综合症,其临床表现为:起床难,起床后精神不佳。作为一名青春阳光好少年,atm 一直坚持与起床困难综合症作斗争。通过研究相关文献,他找到了该病的发病原因:在深邃的太平洋海底中,出现了一条名为 drd 的巨龙,它掌握着睡眠之精髓,能随意延长大家的睡眠时间。正是由于 drd 的活动,起床困难综合症愈演愈烈,以惊人的速度在世界上传播。为了彻底消灭这种病,atm 决定前往海底,消灭这条恶龙。历经千辛万苦,atm 终于来到了 drd 所在的地方,准备与其展开艰苦卓绝的战斗。drd 有着十分特殊的技能,他的防御战线能够使用一定的运算来改变他受到的伤害。具体说来,drd 的防御战线由 n扇防御门组成。每扇防御门包括一个运算op和一个参数t,其中运算一定是OR,XOR,AND中的一种,参数则一定为非负整数。如果还未通过防御门时攻击力为x,则其通过这扇防御门后攻击力将变为x op t。最终drd 受到的伤害为对方初始攻击力x依次经过所有n扇防御门后转变得到的攻击力。由于atm水平有限,他的初始攻击力只能为0到m之间的一个整数(即他的初始攻击力只能在0,1,...,m中任选,但在通过防御门之后的攻击力不受 m的限制)。为了节省体力,他希望通过选择合适的初始攻击力使得他的攻击能让 drd 受到最大的伤害,请你帮他计算一下,他的一次攻击最多能使 drd 受到多少伤害。

Input

第1行包含2个整数,依次为n,m,表示drd有n扇防御门,atm的初始攻击力为0到m之间的整数。接下来n行,依次表示每一扇防御门。每行包括一个字符串op和一个非负整数t,两者由一个空格隔开,且op在前,t在后,op表示该防御门所对应的操作, t表示对应的参数。n<=10^5

Output

一行一个整数,表示atm的一次攻击最多使 drd 受到多少伤害。

Sample Input

3 10
AND 5
OR 6
XOR 7

Sample Output

1

HINT

 

【样例说明1】

atm可以选择的初始攻击力为0,1,...,10。

假设初始攻击力为4,最终攻击力经过了如下计算

4 AND 5 = 4

4 OR 6 = 6

6 XOR 7 = 1

类似的,我们可以计算出初始攻击力为1,3,5,7,9时最终攻击力为0,初始攻击力为0,2,4,6,8,10时最终攻击力为1,因此atm的一次攻击最多使 drd 受到的伤害值为1。

0<=m<=10^9

0<=t<=10^9  

一定为OR,XOR,AND 中的一种

【运算解释】

在本题中,选手需要先将数字变换为二进制后再进行计算。如果操作的两个数二进制长度不同,则在前补0至相同长度。OR为按位或运算,处理两个长度相同的二进制数,两个相应的二进制位中只要有一个为1,则该位的结果值为1,否则为0。XOR为按位异或运算,对等长二进制模式或二进制数的每一位执行逻辑异或操作。如果两个相应的二进制位不同(相异),则该位的结果值为1,否则该位为0。 AND 为按位与运算,处理两个长度相同的二进制数,两个相应的二进制位都为1,该位的结果值才为1,否则为0。

例如,我们将十进制数5与十进制数3分别进行OR,XOR 与 AND 运算,可以得到如下结果:

 

              0101 (十进制 5)           0101 (十进制 5)           0101 (十进制 5)

 

              OR 0011 (十进制 3)    XOR 0011 (十进制 3)    AND 0011 (十进制 3)

 

           = 0111 (十进制 7)       = 0110 (十进制 6)        = 0001 (十进制 1)
 

 

正解:贪心+位运算

解题报告:

  这道题作为NOI2014的day1T1还是送的挺良心的...

  考虑m的每一位只有两种状态可取,而且位与位之间互相独立,所以分开考虑即可。

  每一位若是能取0而使得最终这一位是1,显然这是最优情况,并且一定合法;

  若这一位取1而使得最终答案中这一位是1,当且仅当这一位取1之后不超过m时合法;

  否则无论如何都不能使得最终答案这一位为1,取0即可。

 

//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <vector>
#include <queue>
using namespace std;
typedef long long LL;
const int MAXN = 100011;
int n,m,type[MAXN],val[MAXN],ans,now;
char ch[12];

inline int getint(){
    int w=0,q=0; char c=getchar(); while((c<'0'||c>'9') && c!='-') c=getchar();
    if(c=='-') q=1,c=getchar(); while (c>='0'&&c<='9') w=w*10+c-'0',c=getchar(); return q?-w:w;
}

inline int getans(int wei,int ini){
	for(int i=1;i<=n;i++) {
		if(type[i]==1) ini&=(val[i]>>wei);
		else if(type[i]==2) ini^=(val[i]>>wei);
		else ini|=(val[i]>>wei);
	}
	return ini&1;
}

inline void work(){
	n=getint(); m=getint();
	for(int i=1;i<=n;i++) {
		scanf("%s",ch);
		if(ch[0]=='A') type[i]=1;//AND
		else if(ch[0]=='X') type[i]=2;//XOR
		else type[i]=3;//OR
		val[i]=getint();
 	}
	for(int i=30;i>=0;i--) {
		if(getans(i,0)) { ans|=(1<<i); continue; }
		if(now+(1<<i)<=m && getans(i,1)) { now|=(1<<i); ans|=(1<<i); continue; }
 	}
	printf("%d",ans);
}

int main()
{
    work();
    return 0;
}

  

 
posted @ 2017-01-25 21:45  ljh_2000  阅读(241)  评论(0编辑  收藏  举报