codeforces 21D:Traveling Graph

Description

You are given undirected weighted graph. Find the length of the shortest cycle which starts from the vertex 1 and passes throught all the edges at least once. Graph may contain multiply edges between a pair of vertices and loops (edges from the vertex to itself).

Input

The first line of the input contains two integers n and m (1 ≤ n ≤ 15, 0 ≤ m ≤ 2000), n is the amount of vertices, and m is the amount of edges. Following m lines contain edges as a triples x, y, w (1 ≤ x, y ≤ n, 1 ≤ w ≤ 10000), x, y are edge endpoints, and w is the edge length.

Output

Output minimal cycle length or -1 if it doesn't exists.

Examples
Input
3 3
1 2 1
2 3 1
3 1 1
Output
3
Input
3 2
1 2 3
2 3 4
Output
14



正解:状压DP
解题报告:
  考虑度数为偶数的点不需要被考虑,只需要考虑度数为奇数的情况。首先每条边必须要访问一次,所以所有边权加起来就是答案的初值。 
  然后度数为奇数的点就需要访问之前已经走过的边。我们考虑两个度数为奇数的点可以组合一下,变成度数为偶数的点,相当于是在这两个点之间新连了一条边,我们可以floyd预处理一下两点之间的最短路。然后状压,状态表示当前哪些结点的度数为奇数,然后枚举每次连哪两条边就可以了。
  

 1 //It is made by jump~
 2 #include <iostream>
 3 #include <cstdlib>
 4 #include <cstring>
 5 #include <cstdio>
 6 #include <cmath>
 7 #include <algorithm>
 8 #include <ctime>
 9 #include <vector>
10 #include <queue>
11 #include <map>
12 #include <set>
13 using namespace std;
14 typedef long long LL;
15 const int inf = (1<<29);
16 const int MAXN = 30;
17 const int MAXS = (1<<20);
18 int n,m,ans,end;
19 int w[MAXN][MAXN];
20 int d[MAXN],f[MAXS];
21 
22 inline int getint()
23 {
24     int w=0,q=0; char c=getchar();
25     while((c<'0' || c>'9') && c!='-') c=getchar(); if(c=='-') q=1,c=getchar(); 
26     while (c>='0' && c<='9') w=w*10+c-'0', c=getchar(); return q ? -w : w;
27 }
28 
29 inline void work(){
30     n=getint(); m=getint(); int x,y,z,now; if(m==0) { printf("0"); return ; }
31     for(int i=1;i<=n;i++) for(int j=1;j<=n;j++) w[i][j]=inf;
32     for(int i=1;i<=m;i++) {
33     x=getint(); y=getint(); z=getint();
34     ans+=z; d[x]++; d[y]++;
35     if(w[x][y]>z) w[x][y]=z,w[y][x]=z;
36     }   
37     for(int k=1;k<=n;k++) for(int i=1;i<=n;i++) if(i!=k) for(int j=1;j<=n;j++) if(i!=j && j!=k) w[i][j]=min(w[i][j],w[i][k]+w[k][j]);
38     for(int i=2;i<=n;i++) if(d[i]!=0 && w[1][i]==inf) { printf("-1"); return ; }
39     for(int i=1;i<=n;i++) if(d[i]&1) end|=(1<<(i-1));
40     for(int i=0;i<=end;i++) f[i]=inf; f[end]=0;
41     for(int i=end;i>0;i--) {
42     if(f[i]==inf) continue;
43     for(int j=1;j<=n;j++) {
44         if(((1<<(j-1))&i )==0) continue;
45         for(int k=1;k<=n;k++) {
46         if(( (1<<(k-1))&i )==0) continue; now=i^(1<<(k-1))^(1<<(j-1));
47         f[now]=min(f[now],f[i]+w[j][k]);
48         }
49     }
50     }
51     ans+=f[0]; printf("%d",ans);
52 }
53 
54 int main()
55 {
56     work();
57     return 0;
58 }

 



posted @ 2016-10-06 16:24  ljh_2000  阅读(349)  评论(0编辑  收藏  举报