BZOJ1491 [NOI2007]社交网络
Description
在社交网络(socialnetwork)的研究中,我们常常使用图论概念去解释一些社会现象。不妨看这样的一个问题。
在一个社交圈子里有n个人,人与人之间有不同程度的关系。我们将这个关系网络对应到一个n个结点的无向图上,
两个不同的人若互相认识,则在他们对应的结点之间连接一条无向边,并附上一个正数权值c,c越小,表示两个人
之间的关系越密切。我们可以用对应结点之间的最短路长度来衡量两个人s和t之间的关系密切程度,注意到最短路
径上的其他结点为s和t的联系提供了某种便利,即这些结点对于s和t之间的联系有一定的重要程度。我们可以通过
统计经过一个结点v的最短路径的数目来衡量该结点在社交网络中的重要程度。考虑到两个结点A和B之间可能会有
多条最短路径。我们修改重要程度的定义如下:令Cs,t表示从s到t的不同的最短路的数目,Cs,t(v)表示经过v从s
到t的最短路的数目;则定义
为结点v在社交网络中的重要程度。为了使I(v)和Cs,t(v)有意义,我们规定需要处理的社交网络都是连通的无向图
,即任意两个结点之间都有一条有限长度的最短路径。现在给出这样一幅描述社交网络的加权无向图,请你求出每
一个结点的重要程度。
Input
输入第一行有两个整数n和m,表示社交网络中结点和无向边的数目。在无向图中,我们将所有结点从1到n进行编号
。接下来m行,每行用三个整数a,b,c描述一条连接结点a和b,权值为c的无向边。注意任意两个结点之间最多有
一条无向边相连,无向图中也不会出现自环(即不存在一条无向边的两个端点是相同的结点)。n≤100;m≤4500
,任意一条边的权值 c 是正整数,满足:1≤c≤1000。所有数据中保证给出的无向图连通,且任意两个结点之间
的最短路径数目不超过 10^10
Output
输出包括n行,每行一个实数,精确到小数点后3位。第i行的实数表示结点i在社交网络中的重要程度。
Sample Input
4 4
1 2 1
2 3 1
3 4 1
4 1 1
1 2 1
2 3 1
3 4 1
4 1 1
Sample Output
1.000
1.000
1.000
1.000
1.000
1.000
1.000
HINT
社交网络如下图所示。
对于 1 号结点而言,只有 2 号到 4 号结点和 4 号到 2 号结点的最短路经过 1 号结点,而 2 号结点和 4 号结
点之间的最短路又有 2 条。因而根据定义,1 号结点的重要程度计算为 1/2 + 1/2 = 1 。由于图的对称性,其他
三个结点的重要程度也都是 1 。
正解:floyd
解题报告:
n<=100,想怎么乱搞怎么乱搞。。。
floyd求出两点间的最短路,顺便统计一下有多少条不同的最短路。
然后第二遍再做的时候,按照定义统计一下每个结点的重要度ans[i],如果经过k存在i到j的最短路,那么ans[k]需要加入这次的贡献,顺便统计一下就可以了。
1 //It is made by jump~ 2 #include <iostream> 3 #include <cstdlib> 4 #include <cstring> 5 #include <cstdio> 6 #include <cmath> 7 #include <algorithm> 8 #include <ctime> 9 #include <vector> 10 #include <queue> 11 #include <map> 12 #include <set> 13 #ifdef WIN32 14 #define OT "%I64d" 15 #else 16 #define OT "%lld" 17 #endif 18 using namespace std; 19 typedef long long LL; 20 const int MAXN = 150; 21 int n,m; 22 int w[MAXN][MAXN]; 23 double num[MAXN][MAXN]; 24 double ans[MAXN]; 25 26 inline int getint() 27 { 28 int w=0,q=0; 29 char c=getchar(); 30 while((c<'0' || c>'9') && c!='-') c=getchar(); 31 if (c=='-') q=1, c=getchar(); 32 while (c>='0' && c<='9') w=w*10+c-'0', c=getchar(); 33 return q ? -w : w; 34 } 35 36 inline void work(){ 37 n=getint(); m=getint(); int x,y,z; 38 memset(w,127/3,sizeof(w)); 39 for(int i=1;i<=m;i++) { 40 x=getint(); y=getint(); z=getint(); 41 w[x][y]=w[y][x]=z; num[x][y]=num[y][x]=1; 42 } 43 for(int k=1;k<=n;k++) 44 for(int i=1;i<=n;i++) 45 if(i!=k) 46 for(int j=1;j<=n;j++) 47 if(j!=k && j!=i) { 48 if(w[i][j]>w[i][k]+w[k][j]) { 49 w[i][j]=w[i][k]+w[k][j]; 50 num[i][j]=num[i][k]*num[k][j]; 51 } 52 else if(w[i][j]==w[i][k]+w[k][j]) num[i][j]+=num[i][k]*num[k][j]; 53 } 54 55 for(int k=1;k<=n;k++) 56 for(int i=1;i<=n;i++) if(i!=k) 57 for(int j=1;j<=n;j++) 58 if(j!=k && j!=i) { 59 if(w[i][j]==w[i][k]+w[k][j]) ans[k]+=((num[i][k]*num[k][j])/num[i][j]);//作为这一对点的中转点重要程度贡献 60 } 61 for(int i=1;i<=n;i++) printf("%.3lf\n",ans[i]); 62 } 63 64 int main() 65 { 66 work(); 67 return 0; 68 }
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!