用python生成与调用cntk模型代码演示方法

由于一些原因,视频录制要告一段落了。再写一篇关于cntk的文章分享出来吧。我也很想将这个事情进行下去。以后如果条件允许还会接着做。

cntk2.0框架生成的模型才可以支持python。1.0不支持。

python可以导入cntk.exe生成的框架,也可以导入python调用cntk生成的框架。举两个例子:

1 、导入cntk.exe生成的框架。

    from cntk.ops.functions import load_model
    from PIL import Image 
    import numpy as np
    from sklearn.utils import shuffle
    
    np.random.seed(0)
    
    
    def generate(N, mean, cov, diff):  
      #import ipdb;ipdb.set_trace()
    
      samples_per_class = int(N/2)
    
      X0 = np.random.multivariate_normal(mean, cov, samples_per_class)
      Y0 = np.zeros(samples_per_class)
    
      for ci, d in enumerate(diff):
        X1 = np.random.multivariate_normal(mean+d, cov, samples_per_class)
        Y1 = (ci+1)*np.ones(samples_per_class)
    
        X0 = np.concatenate((X0,X1))
        Y0 = np.concatenate((Y0,Y1))
    
      X, Y = shuffle(X0, Y0)
    
      return X,Y
    mean = np.random.randn(2)
    cov = np.eye(2) 
    features, labels = generate(6, mean, cov, [[3.0], [3.0, 0.0]])
    features= features.astype(np.float32) 
    labels= labels.astype(np.int) 
    print(features)
    print(labels)
    
    
    
    z = load_model("MC.dnn")
    
    
    print(z.parameters[0].value)
    print(z.parameters[0])
    print(z)
    print(z.uid)
    #print(z.signature)
    #print(z.layers[0].E.shape)
    #print(z.layers[2].b.value)
    for index in range(len(z.inputs)):
       print("Index {} for input: {}.".format(index, z.inputs[index]))
    
    for index in range(len(z.outputs)):
       print("Index {} for output: {}.".format(index, z.outputs[index].name))
    
    import cntk as ct
    z_out = ct.combine([z.outputs[2].owner])
    
    predictions = np.squeeze(z_out.eval({z_out.arguments[0]:[features]}))
    
    ret = list()
    for t in predictions:
      ret.append(np.argmax(t))
    top_class = np.argmax(predictions)
    print(ret)
    print("predictions{}.top_class{}".format(predictions,top_class)) 
    
    

上述的代码生成一个.py文件。放到3分类例子中,跟模型一个文件夹下(需要预先用cntk.exe生成模型)。CNTK-2.0.beta15.0\CNTK-2.0.beta15.0\Tutorials\HelloWorld-
LogisticRegression\Models

2 、python生成模型和使用自己的模型:

代码如下:

    # -*- coding: utf-8 -*-
    """
    Created on Mon Apr 10 04:59:27 2017
    
    @author: Administrator
    """
    
    from __future__ import print_function
    
    
    import matplotlib.pyplot as plt 
    import numpy as np 
    from matplotlib.colors import colorConverter, ListedColormap 
    from cntk.learners import sgd, learning_rate_schedule, UnitType #old in learner
    from cntk.ops.functions import load_model
    from cntk.ops import *  #softmax
    from cntk.io import CTFDeserializer, MinibatchSource, StreamDef, StreamDefs
    
    
    from cntk import * 
    from cntk.layers import Dense, Sequential
    from cntk.logging import ProgressPrinter
    
    
    def generate_random_data(sample_size, feature_dim, num_classes):
       # Create synthetic data using NumPy.
       Y = np.random.randint(size=(sample_size, 1), low=0, high=num_classes)
    
       # Make sure that the data is separable
       X = (np.random.randn(sample_size, feature_dim) + 3) * (Y + 1)
       X = X.astype(np.float32)
       # converting class 0 into the vector "1 0 0",
       # class 1 into vector "0 1 0", ...
       class_ind = [Y == class_number for class_number in range(num_classes)]
       Y = np.asarray(np.hstack(class_ind), dtype=np.float32)
       return X, Y
    
    # Read a CTF formatted text (as mentioned above) using the CTF deserializer from a file
    def create_reader(path, is_training, input_dim, num_label_classes):
      return MinibatchSource(CTFDeserializer(path, StreamDefs(
        labels = StreamDef(field='labels', shape=num_label_classes, is_sparse=False),
        features  = StreamDef(field='features', shape=input_dim, is_sparse=False)
      )), randomize = is_training, epoch_size = INFINITELY_REPEAT if is_training else FULL_DATA_SWEEP)   
    
    
    def ffnet():
      inputs = 2
      outputs = 2
      layers = 2
      hidden_dimension = 50
    
      # input variables denoting the features and label data
      features = input((inputs), np.float32)
      label = input((outputs), np.float32)
    
      # Instantiate the feedforward classification model
      my_model = Sequential ([
              Dense(hidden_dimension, activation=sigmoid,name='d1'),
              Dense(outputs)])
      z = my_model(features)
    
      ce = cross_entropy_with_softmax(z, label)
      pe = classification_error(z, label)
    
      # Instantiate the trainer object to drive the model training
      lr_per_minibatch = learning_rate_schedule(0.125, UnitType.minibatch)
    
      # Initialize the parameters for the reader
      input_dim=2
      num_output_classes=2
      num_samples_per_sweep = 6000
      # Get minibatches of training data and perform model training
      minibatch_size = 25
      num_minibatches_to_train = 1024
      num_sweeps_to_train_with = 2#10
      num_minibatches_to_train = (num_samples_per_sweep * num_sweeps_to_train_with) / minibatch_size  
    
    
      # progress_printer = ProgressPrinter(0)
      progress_printer = ProgressPrinter(tag='Training',num_epochs=num_sweeps_to_train_with)
    
      trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)], [progress_printer])
      #trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)])
    
    
    
    
      train_file = "Train2-noLiner_cntk_text.txt"  
      # Create the reader to training data set
      reader_train = create_reader(train_file, True, input_dim, num_output_classes)
      # Map the data streams to the input and labels.
      input_map = {
        label : reader_train.streams.labels,
        features : reader_train.streams.features
      } 
      print(reader_train.streams.keys())
    
      aggregate_loss = 0.0
      #for i in range(num_minibatches_to_train):
      for i in range(0, int(num_minibatches_to_train)):
        #train_features, labels = generate_random_data(minibatch_size, inputs, outputs)
        # Specify the mapping of input variables in the model to actual minibatch data to be trained with
        #trainer.train_minibatch({features : train_features, label : labels})
    
        # Read a mini batch from the training data file
        data = reader_train.next_minibatch(minibatch_size, input_map = input_map)
        trainer.train_minibatch(data)
    
        sample_count = trainer.previous_minibatch_sample_count
        aggregate_loss += trainer.previous_minibatch_loss_average * sample_count
        #
      last_avg_error = aggregate_loss / trainer.total_number_of_samples_seen
      trainer.summarize_training_progress()
      z.save_model("myfirstmod.dnn")
      print(z)
      print(z.parameters)
      print(z.d1)
      print(z.d1.signature)
      print(z.d1.root_function)
      print(z.d1.placeholders)
      print(z.d1.parameters)
      print(z.d1.op_name)
      print(z.d1.type)
      print(z.d1.output)
      print(z.outputs)
    
      test_features, test_labels = generate_random_data(minibatch_size, inputs, outputs)
      avg_error = trainer.test_minibatch({features : test_features, label : test_labels})
      print(' error rate on an unseen minibatch: {}'.format(avg_error))
      return last_avg_error, avg_error
    
    np.random.seed(98052)
    ffnet()
    
    
    
    print("-------------分割-----------------")
    inputs = 2
    outputs = 2
    minibatch_size = 5
    features = input((inputs), np.float32)
    label = input((outputs), np.float32)
    test_features, test_labels = generate_random_data(minibatch_size, inputs, outputs)  
    print('fea={}'.format(test_features))
    
    z = load_model("myfirstmod.dnn")
    ce = cross_entropy_with_softmax(z, label)
    pe = classification_error(z, label)
    
    lr_per_minibatch = learning_rate_schedule(0.125, UnitType.minibatch)
    progress_printer = ProgressPrinter(0)
    trainer = Trainer(z, (ce, pe), [sgd(z.parameters, lr=lr_per_minibatch)], [progress_printer])
    avg_error = trainer.test_minibatch({z.arguments[0] : test_features, label : test_labels})
    print(' error rate on an unseen minibatch: {}'.format(avg_error)) 
    
    
    
    result1 = z.eval({z.arguments[0] : test_features}) 
    #print("r={} ".format(result1)) 
    
    
    out = softmax(z)
    result = out.eval({z.arguments[0] : test_features}) 
    print(result)
    
    
    print("Label  :", [np.argmax(label) for label in test_labels])
    print("Predicted  :", [np.argmax(label) for label in result])
    #print("Predicted:", [np.argmax(result[i,:,:]) for i in range(result.shape[0])])
    
    
    type1_x=[]
    type1_y=[]
    
    type2_x=[]
    type2_y=[]
    
    for i in range(len(test_labels)):
    #for i in range(6):  
      if np.argmax(test_labels[i]) == 0:  
        type1_x.append( test_features[i][0] )  
        type1_y.append( test_features[i][1] ) 
    
      if np.argmax(test_labels[i]) == 1:  
        type2_x.append( test_features[i][0] )    
        type2_y.append( test_features[i][1] ) 
    
    
    type1 = plt.scatter(type1_x, type1_y,s=40, c='red',marker='+' )  
    type2 = plt.scatter(type2_x, type2_y, s=40, c='green',marker='+') 
    
    
    
    nb_of_xs = 100
    xs1 = np.linspace(2, 8, num=nb_of_xs)
    xs2 = np.linspace(2, 8, num=nb_of_xs)
    xx, yy = np.meshgrid(xs1, xs2) # create the grid
    
    featureLine = np.vstack((np.array(xx).reshape(1,nb_of_xs*nb_of_xs),np.array(yy).reshape(1,yy.size)))
    print(featureLine.T)
    r = out.eval({z.arguments[0] : featureLine.T})
    
    print(r)
    # Initialize and fill the classification plane
    classification_plane = np.zeros((nb_of_xs, nb_of_xs))
    
    
    for i in range(nb_of_xs):
      for j in range(nb_of_xs):
        #classification_plane[i,j] = nn_predict(xx[i,j], yy[i,j])
        #r = out.eval({z.arguments[0] : [xx[i,j], yy[i,j]]})
        classification_plane[i,j] = np.argmax(r[i*nb_of_xs+j] )
    
    print(classification_plane)
    # Create a color map to show the classification colors of each grid point
    cmap = ListedColormap([
        colorConverter.to_rgba('r', alpha=0.30),
        colorConverter.to_rgba('b', alpha=0.30)])
    # Plot the classification plane with decision boundary and input samples
    plt.contourf(xx, yy, classification_plane, cmap=cmap)
    
    
    plt.xlabel('x1')  
    plt.ylabel('x2')  
    #axes.legend((type1, type2,type3), ('0', '1','2'),loc=1)  
    plt.show() 
    
    

代码内容:

1先生成模型。并打印出模型里面的参数

2调用模型,测试下模型错误率

3调用模型,输出结果

4将数据可视化

输出:dict_keys([‘features', ‘labels'])

Finished Epoch[1 of 2]: [Training] loss = 0.485836 * 12000, metric = 20.36% *
12000 0.377s (31830.2 samples/s);

Composite(Dense): Input(‘Input456', [#], [2]) -> Output(‘Block577_Output_0',
[#], [2])

(Parameter(‘W', [], [50 x 2]), Parameter(‘b', [], [2]), Parameter(‘W', [], [2
x 50]), Parameter(‘b', [], [50]))

Dense: Input(‘Input456', [#], [2]) -> Output(‘d1', [#], [50])

(Input(‘Input456', [#], [2]),)

Dense: Input(‘Input456', [#], [2]) -> Output(‘d1', [#], [50])

()

(Parameter(‘W', [], [2 x 50]), Parameter(‘b', [], [50]))

Dense

Tensor[50]

Output(‘d1', [#], [50])

(Output(‘Block577_Output_0', [#], [2]),)

error rate on an unseen minibatch: 0.6

在这里插入图片描述

posted @ 2021-06-21 18:04  老酱  阅读(183)  评论(0编辑  收藏  举报