机器学习 实验二 k-近邻算法及应用

名称 内容
博客班级 班级链接:https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12004
作业要求 作业链接:https://edu.cnblogs.com/campus/ahgc/machinelearning/homework/12004
学号 3180701315

【实验目的】
1、理解K-近邻算法原理,能实现算法K近邻算法;
2、掌握常见的距离度量方法;
3、掌握K近邻树实现算法;
4、针对特定应用场景及数据,能应用K近邻解决实际问题。

【实验内容】
1、实现曼哈顿距离、欧氏距离、闵式距离算法,并测试算法正确性。
2、实现K近邻树算法;
3、针对iris数据集,应用sklearn的K近邻算法进行类别预测。
4、针对iris数据集,编制程序使用K近邻树进行类别预测。

【实验报告要求】
1、对照实验内容,撰写实验过程、算法及测试结果;
2、代码规范化:命名规则、注释;
3、分析核心算法的复杂度;
4、查阅文献,讨论K近邻的优缺点;
5、举例说明K近邻的应用场景。

【代码及实验结果】

1,距离变量(与点1最近的点)
import math
from itertools import combinations
当p=1时,就是曼哈顿距离;
当p=2时,就是欧氏距离;
当p→∞时,就是切比雪夫距离。
def L(x, y, p=2):
     x1 = [1, 1]
    if len(x) == len(y) and len(x) > 1:
        sum = 0
        for i in range(len(x)):
            sum += math.pow(abs(x[i] - y[i]), p)
        return math.pow(sum, 1/p)
    else:
        return 0

x1 = [1, 1]
x2 = [5, 1]
x3 = [4, 4]
 x1与x2和x3的距离
for i in range(1, 5): #i取值1,2,3,4
    r = { \'1-{}\'.format(c):L(x1, c, p=i) for c in [x2, x3]}
    print(min(zip(r.values(), r.keys()))) #当p=i时x2和x3中离x1最近的点的距离

结果:

2,编写k-近邻算法
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline

from sklearn.datasets import load_iris
from sklearn.model_selection import train_test_split

from collections import Counter

# 获取数据
iris = load_iris()
df = pd.DataFrame(iris.data, columns=iris.feature_names)
df[\'label\'] = iris.target
df.columns = [\'sepal length\', \'sepal width\', \'petal length\', \'petal width\', \'label\']
data = np.array(df.iloc[:100, [0, 1, -1]]) #iloc函数:通过行号来取行数据,读取数据前100行的第0,1列和最后一列

#画出数据散点图
plt.scatter(df[:50][\'sepal length\'], df[:50][\'sepal width\'], label=\'0\') #将数据的前50个数据绘制散点图
plt.scatter(df[50:100][\'sepal length\'], df[50:100][\'sepal width\'], label=\'1\') #将数据的50-100之间的数据绘制成散点图
plt.xlabel(\'sepal length\') #给x坐标命名
plt.ylabel(\'sepal width\') #给y坐标命名
plt.legend()

结果:

data = np.array(df.iloc[:100, [0, 1, -1]]) # iloc函数:通过行号来取行数据,读取数据前100行的第0,1列和最后一列
# X为data数据集中去除最后一列所形成的新数据集
# y为data数据集中最后一列数据所形成的新数据集
X, y = data[:,:-1], data[:,-1] 
# 选取训练集,和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)
# 建立一个类KNN,用于k-近邻的计算
class KNN:
    #初始化
    def __init__(self, X_train, y_train, n_neighbors=3, p=2): # 初始化数据,neighbor表示邻近点,p为欧氏距离
        self.n = n_neighbors
        self.p = p
        self.X_train = X_train
        self.y_train = y_train
    
    def predict(self, X):
        # X为测试集
        knn_list = []
        for i in range(self.n): # 遍历邻近点
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离
            knn_list.append((dist, self.y_train[i])) # 在列表末尾添加一个元素
            
        for i in range(self.n, len(self.X_train)): # 3-20
            max_index = knn_list.index(max(knn_list, key=lambda x: x[0])) # 找出列表中距离最大的点
            dist = np.linalg.norm(X - self.X_train[i], ord=self.p) # 计算训练集和测试集之间的距离
            if knn_list[max_index][0] > dist:   # 若当前数据的距离大于之前得出的距离,就将数值替换
                knn_list[max_index] = (dist, self.y_train[i])
                
        # 统计
        knn = [k[-1] for k in knn_list]
        count_pairs = Counter(knn)   # 统计标签的个数
        max_count = sorted(count_pairs, key=lambda x:x)[-1]  # 将标签升序排列
        return max_count
    
    # 计算测试算法的正确率
    def score(self, X_test, y_test):
        right_count = 0 
        n = 10
        for X, y in zip(X_test, y_test):
            label = self.predict(X)
            if label == y:
                right_count += 1
        return right_count / len(X_test)
clf = KNN(X_train, y_train) # 调用KNN算法进行计算
clf.score(X_test, y_test) # 计算正确率

结果:

test_point = [6.0, 3.0] # 用于算法测试的数据
print('Test Point: {}'.format(clf.predict(test_point))) # 结果

结果:

plt.scatter(df[:50]['sepal length'], df[:50]['sepal width'], label='0') # 将数据的前50个数据绘制散点图
plt.scatter(df[50:100]['sepal length'], df[50:100]['sepal width'], label='1') # 将数据的50-100个数据绘制散点图
plt.plot(test_point[0], test_point[1], 'bo', label='test_point') # 将测试数据点绘制在图中
plt.xlabel('sepal length')  
plt.ylabel('sepal width') # x,y轴命名
plt.legend()  # 绘图

结果:

3,使用KNeighborsClassifier验证
#引入K近邻算法对比验证
from sklearn.neighbors import KNeighborsClassifier
clf_sk = KNeighborsClassifier()
#sklearn.neighbors.KNeighborsClassifier
#n_neighbors: 临近点个数
#p: 距离度量
#algorithm: 近邻算法,可选{\'auto\', \'ball_tree\', \'kd_tree\', \'brute\'}
#weights: 确定近邻的权重
clf_sk.fit(X_train, y_train)

结果:

clf_sk.score(X_test, y_test) # 计算正确率

结果:

4,构造Kd树算法
# kd-tree每个结点中主要包含的数据结构如下
class KdNode(object):
    def __init__(self, dom_elt, split, left, right):
        self.dom_elt = dom_elt #结点的父结点
        self.split = split #划分结点
        self.left = left #左结点
        self.right = right # 右结点
class KdTree(object):
    def __init__(self, data):
        k = len(data[0]) # 数据维度
        
        def CreateNode(split, data_set): # 按第split维划分数据集exset创建KdNode
            if not data_set: # 数据集为空
                return None
            # key参数的值为一个函数,此函数只有一个参数且返回一个值用来进行比较
            # operator模块提供的itemgetter函数用于获取对象的哪些维的数据,参数为需要获取的数据在对象
            #data_set.sort(key=itemgetter(split)) # 按要进行分割的那一维数据排序
            data_set.sort(key=lambda x: x[split])
            split_pos = len(data_set) // 2 # //为Python中的整数除法
            median = data_set[split_pos] # 中位数分割点
            split_next = (split + 1) % k # cycle coordinates

            # 递归的创建kd树
            return KdNode(median, split,
                        CreateNode(split_next, data_set[:split_pos]), # 创建左子树
                        CreateNode(split_next, data_set[split_pos + 1:])) # 创建右子树
        
        self.root = CreateNode(0, data) # 从第0维分量开始构建kd树,返回根节点      
# KDTree的前序遍历
def preorder(root):
    print (root.dom_elt)
    if root.left: # 节点不为空
        preorder(root.left)
    if root.right:
        preorder(root.right)
# 对构建好的kd树进行搜索,寻找与目标点最*的样本点:
from math import sqrt
from collections import namedtuple
# 定义一个namedtuple,分别存放最*坐标点、最*距离和访问过的节点数
result = namedtuple("Result_tuple", "nearest_point nearest_dist nodes_visited")
def find_nearest(tree, point):
    k = len(point) # 数据维度
    def travel(kd_node, target, max_dist):
        if kd_node is None:
            return result([0] * k, float("inf"), 0) # python中用float("inf")和float("-inf")表示正负    
        nodes_visited = 1      
        s = kd_node.split # 进行分割的维度
        pivot = kd_node.dom_elt # 进行分割的“轴        
        if target[s] <= pivot[s]: # 如果目标点第s维小于分割轴的对应值(目标离左子树更*)
            nearer_node = kd_node.left # 下一个访问节点为左子树根节点
            further_node = kd_node.right # 同时记录下右子树
        else: # 目标离右子树更*
            nearer_node = kd_node.right # 下一个访问节点为右子树根节点
            further_node = kd_node.left
        temp1 = travel(nearer_node, target, max_dist) # 进行遍历找到包含目标点的区域       
        nearest = temp1.nearest_point # 以此叶结点作为“当前最*点”
        dist = temp1.nearest_dist # 更新最*距离
        nodes_visited += temp1.nodes_visited
        if dist < max_dist:
            max_dist = dist # 最*点将在以目标点为球心,max_dist为半径的超球体内
        temp_dist = abs(pivot[s] - target[s]) # 第s维上目标点与分割超平面的距离
        if max_dist < temp_dist: # 判断超球体是否与超平面相交
            return result(nearest, dist, nodes_visited) # 不相交则可以直接返回,不用继续判断      
        #----------------------------------------------------------------------
        # 计算目标点与分割点的欧氏距离
        temp_dist = sqrt(sum((p1 - p2) ** 2 for p1, p2 in zip(pivot, target)))
        if temp_dist < dist: # 如果“更*”
            nearest = pivot # 更新最*点
            dist = temp_dist # 更新最*距离
            max_dist = dist # 更新超球体半径
        # 检查另一个子结点对应的区域是否有更*的点
        temp2 = travel(further_node, target, max_dist)
        nodes_visited += temp2.nodes_visited
        if temp2.nearest_dist < dist: # 如果另一个子结点内存在更*距离
            nearest = temp2.nearest_point # 更新最*点
            dist = temp2.nearest_dist # 更新最*距离
        return result(nearest, dist, nodes_visited)
    return travel(tree.root, point, float("inf")) # 从根节点开始递归
data = [[2,3],[5,4],[9,6],[4,7],[8,1],[7,2]]
kd = KdTree(data)
preorder(kd.root)
from time import clock
from random import random
# 产生一个k维随机向量,每维分量值在0~1之间
def random_point(k):
    return [random() for _ in range(k)]
# 产生n个k维随机向量
def random_points(k, n):
    return [random_point(k) for _ in range(n)]
ret = find_nearest(kd, [3,4.5])
print (ret)
N = 400000
t0 = clock()
kd2 = KdTree(random_points(3, N)) # 构建包含四十万个3维空间样本点的kd树
ret2 = find_nearest(kd2, [0.1,0.5,0.8]) # 四十万个样本点中寻找离目标最*的点
t1 = clock()
print ("time: ",t1-t0, "s")
print (ret2)

结果:



实验小结
实现k-近邻算法算先是测试数据到每个训练数据的距离(一般采用欧氏距离),再按照距离从小到大排列,选取距离最小的k个点。然后统计这k个点在各个类别中的频率,最后选取k个点所在类别频率最高的作为测试数据的预测类别
。它的思想简单来说就是,选取k个最邻近的点,这k个点属于哪类个数最多,则该点就属于哪类。

posted @ 2021-05-19 15:04  li小老虎  阅读(174)  评论(0编辑  收藏  举报