「Luogu4091」[HEOI2016/TJOI2016]求和
「Luogu4091」[HEOI2016/TJOI2016]求和
Solution
我们知道当\(i<j\)时,\(S(i,j)=0\),所以
\[\sum_{i=0}^n\sum_{j=0}^iS(i,j)\times 2^j\times j!
\]
\[=\sum_{j=0}^n2^j\times j!\sum_{i=0}^nS(i,j)
\]
将第二类斯特林数的展开式代入得
\[\sum_{j=0}^n2^j\times j!\sum_{i=0}^n\frac{1}{j!}\sum_{k=0}^j(-1)^k\times\begin{pmatrix}j\\k\end{pmatrix}(j-k)^i
\]
\[=\sum_{j=0}^n2^j\times j!\sum_{i=0}^n\sum_{k=0}^j\frac{(-1)^k}{k!}\times\frac{(j-k)^i}{(j-k)!}
\]
\[=\sum_{j=0}^n2^j\times j!\sum_{k=0}^j\frac{(-1)^k}{k!}\times\frac{\sum_{i=0}^n(j-k)^i}{(j-k)!}
\]
\[=\sum_{j=0}^n2^j\times j!\sum_{k=0}^j\frac{(-1)^k}{k!}\times\frac{(j-k)^{n+1}-1}{(j-k-1)(j-k)!}
\]
后面那玩意看起来很像两个函数的卷积
我们令\(f(x)=\frac{(-1)^x}{x!},g(x)=\frac{x^{n+1}-1}{(x-1)x!}\)
代入得
\[\sum_{j=0}^n2^j\times j!\sum_{k=0}^jf(k)\times g(j-k)
\]
\[=\sum_{j=0}^n2^j\times j!(f*g)(j)
\]
然后就可以用\(NTT\)来预处理出\((f*g)\)了
Code
#include <cstdio>
#include <cstdlib>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <iostream>
#define inv(x) ((fastpow((x),mod-2)))
using namespace std;
typedef long long ll;
template <typename T>void read(T &t)
{
t=0;int f=0;char c=getchar();
while(!isdigit(c)){f|=c=='-';c=getchar();}
while(isdigit(c)){t=t*10+c-'0';c=getchar();}
if(f)t=-t;
}
const ll mod=998244353,gg=3,ig=332748118;
const int maxn=100000+5;
int n;
ll f[maxn<<3],g[maxn<<3];
int len;
int rev[maxn<<3];
ll fastpow(ll a,ll b)
{
ll re=1,base=a;
while(b)
{
if(b&1)
re=re*base%mod;
base=base*base%mod;
b>>=1;
}
return re;
}
void NTT(ll *f,int type)
{
for(register int i=0;i<len;++i)
if(i<rev[i])
swap(f[i],f[rev[i]]);
for(register int p=2;p<=len;p<<=1)
{
int length=p>>1;
ll unr=fastpow(type==1?gg:ig,(mod-1)/p);
for(register int l=0;l<len;l+=p)
{
register ll w=1;
for(register int i=l;i<l+length;++i,w=w*unr%mod)
{
ll tt=f[i+length]*w%mod;
f[i+length]=(f[i]-tt+mod)%mod;
f[i]=(f[i]+tt)%mod;
}
}
}
if(!type)
{
ll ilen=inv(len);
for(register int i=0;i<len;++i)
f[i]=f[i]*ilen%mod;
}
}
int main()
{
read(n);
f[0]=g[0]=1;
g[1]=n+1,f[1]=mod-1;
for(register ll i=2,fac=2;i<=n;++i,fac=fac*i%mod)
{
f[i]=f[i-1]*(mod-1)%mod*inv(i)%mod;
g[i]=(fastpow(i,n+1)-1+mod)%mod*inv(i-1)%mod*inv(fac)%mod;
}
for(len=1;len<=n+n;len<<=1);
for(register int i=0;i<len;++i)
rev[i]=((rev[i>>1]>>1)|((i&1)?len>>1:0));
NTT(f,1);
NTT(g,1);
for(register int i=0;i<len;++i)
f[i]=f[i]*g[i]%mod;
NTT(f,0);
ll ans=0;
for(register ll i=0,pt=1,fac=1;i<=n;++i,pt=pt*2%mod,fac=fac*i%mod)
ans=(ans+pt*fac%mod*f[i]%mod)%mod;
printf("%lld",ans);
return 0;
}