「Luogu2257」YY的GCD

「Luogu2257」YY的GCD

蒟蒻的第一道莫反

跟着题解推的式子,但还是记录一下过程吧

本文可能在一定程度上存在谬误,请谨慎分析

若发现文中有错误,如您愿意,恳请您向我指出,不胜感激


problem

Solution

题目要求:

\[ans=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)\in prime] \]

\(f(p)=\sum_{i=1}^N\sum_{j=1}^M[gcd(i,j)=p](p\in prime)\)

再令\(g(p)=\sum_{i=1}^N\sum_{j=1}^M[p|gcd(i,j)](p\in prime)\)

于是有

\[g(n)=\sum_{n|d}f(d) \]

反演后可得

\[f(n)=\sum_{n|d}\mu(\frac{d}{n})g(d) \]

又知\(g(d)=\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\)

于是有

\[ans=\sum_{n\in prime}f(n)=\sum_{n\in prime}\sum_{n|d}\mu (\frac{d}{n})\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\\=\sum_{n|d}\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\sum_{n\in prime}\mu(\frac{d}{n})\\=\sum_{d=1}^{min(N,M)}\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\sum_{n|d,n\in prime}\mu(\frac{d}{n}) \]

\(sum(d)=\sum_{n|d,n\in prime}\mu(\frac{d}{n})\),预处理\(sum(d)\)

那么答案即

\[ans=\sum_{d=1}^{min(M,N)}\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor sum(d) \]

\(\sum sum(d)\)仍可以利用前缀和优化,\(\sum\lfloor\frac{N}{d}\rfloor\lfloor\frac{M}{d}\rfloor\)利用整除分块优化,最终时间复杂度为\(O(T\sqrt{min(N,M)}+k)\)\(k\)为预处理复杂度

Code

#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cmath>
#include <algorithm>
#define maxn 10000005
#define N 10000000
using namespace std;
typedef long long ll;

template <typename T> void read(T &t)
{
	t=0;int f=0;char c=getchar();
	while(!isdigit(c)){f|=c=='-';c=getchar();}
	while(isdigit(c)){t=t*10+c-'0';c=getchar();}
	if(f)t=-t;
}

int T;
int n,m;
int pri[maxn],pcnt,nop[maxn];
int mu[maxn];
ll sum[maxn],up;

void GetPrime()
{
	nop[1]=1,mu[1]=1;
	for(register int i=2;i<=N;++i)
	{
		if(!nop[i])pri[++pcnt]=i,mu[i]=-1; 
		for(register int j=1;j<=pcnt && i*pri[j]<=N;++j)
		{
			nop[i*pri[j]]=1;
			if(i%pri[j]==0)break;
			else mu[i*pri[j]]=-mu[i];
		}
	}
	for(register int i=1;i<=pcnt;++i)
		for(register int j=1;pri[i]*j<=N;++j)
			sum[pri[i]*j]+=mu[j];
	for(register int i=1;i<=N;++i)
		sum[i]+=sum[i-1];
}

ll Calc()
{
	ll re=0;
	for(register int l=1,r;l<=up;l=r+1)
	{
		r=min(n/(n/l),m/(m/l));
		re+=1ll*(n/l)*(m/l)*(sum[r]-sum[l-1]);
	}
	return re;
}

int main()
{
	read(T);
	GetPrime();
	while(T--)
	{
		read(n),read(m);
		up=min(n,m);
		printf("%lld\n",Calc());
	}
	return 0;
}
posted @ 2019-03-11 10:12  lizbaka  阅读(196)  评论(0编辑  收藏  举报