10.10
LLM在长上下文RAG中的不同失败模式
为评估生成模型在处理长上下文长度时的失败模式,我们对OpenAI的o1和Gemini 1.5 Pro进行了分析,使用了与我们之前博文相同的方法(https://www.databricks.com/blog/long-context-rag-performance-llms)。我们提取了各个模型在不同上下文长度下的回答,并手动检查了多个样本,基于观察结果定义了以下广泛的失误类别:
重复内容(repeated_content):当模型的回答完全由重复的(无意义的)单词或字符组成。
随机内容(random_content):当模型生成的回答完全随机,与上下文无关,或者没有逻辑性或语法合理性。
未遵循指令(fail_follow_inst):当模型未理解指令的意图或未遵循问题中指定的指令。例如,当指令要求基于上下文回答问题时,模型却尝试总结上下文。
空响应(empty_resp):生成的回答为空
错误答案(wrong_answer):当模型尝试遵循指令,但给出的回答错误。
其他(others): 失误不属于上述列出的任何类别。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人