poj 3614(网络流)
Time Limit: 1000MS | Memory Limit: 65536K | |
Total Submissions: 6672 | Accepted: 2348 |
Description
To avoid unsightly burns while tanning, each of the C (1 ≤ C ≤ 2500) cows must cover her hide with sunscreen when they're at the beach. Cow i has a minimum and maximum SPF rating (1 ≤ minSPFi ≤ 1,000; minSPFi ≤ maxSPFi ≤ 1,000) that will work. If the SPF rating is too low, the cow suffers sunburn; if the SPF rating is too high, the cow doesn't tan at all........
The cows have a picnic basket with L (1 ≤ L ≤ 2500) bottles of sunscreen lotion, each bottle i with an SPF rating SPFi (1 ≤ SPFi ≤ 1,000). Lotion bottle i can cover coveri cows with lotion. A cow may lotion from only one bottle.
What is the maximum number of cows that can protect themselves while tanning given the available lotions?
Input
* Line 1: Two space-separated integers: C and L
* Lines 2..C+1: Line i describes cow i's lotion requires with two integers: minSPFi and maxSPFi
* Lines C+2..C+L+1: Line i+C+1 describes a sunscreen lotion bottle i with space-separated integers: SPFi and coveri
Output
A single line with an integer that is the maximum number of cows that can be protected while tanning
Sample Input
3 2 3 10 2 5 1 5 6 2 4 1
Sample Output
2
Source
题意:N头牛,第I头需要一个SPF的范围是MinSPF~MaxSPF,m个bottle,每个bottle能给C头牛提供定值为P的SPF,求最多有多少头牛可以得到合适的SPF.
题解:设立超级源点S和超级汇点T,S向每个Bottle引一条容量为P的边,如果牛可以忍受这个bottle的SPF,那么就连一条容量为1的边,最后所有的牛像汇点引一条容量为1的边,求最大流即可。
#include <stdio.h> #include <algorithm> #include <queue> #include <string.h> #include <math.h> #include <iostream> #include <math.h> using namespace std; const int N = 5005; const int INF = 999999999; struct Edge { int v,next; int w; } edge[N*N]; struct Cow{ int minSPF,maxSPF; }cow[N/2]; int head[N]; int level[N]; int tot; void init() { memset(head,-1,sizeof(head)); tot=0; } void addEdge(int u,int v,int w,int &k) { edge[k].v = v,edge[k].w=w,edge[k].next=head[u],head[u]=k++; edge[k].v = u,edge[k].w=0,edge[k].next=head[v],head[v]=k++; } int BFS(int src,int des) { queue<int >q; memset(level,0,sizeof(level)); level[src]=1; q.push(src); while(!q.empty()) { int u = q.front(); q.pop(); if(u==des) return 1; for(int k = head[u]; k!=-1; k=edge[k].next) { int v = edge[k].v; int w = edge[k].w; if(level[v]==0&&w!=0) { level[v]=level[u]+1; q.push(v); } } } return -1; } int dfs(int u,int des,int increaseRoad){ if(u==des||increaseRoad==0) return increaseRoad; int ret=0; for(int k=head[u];k!=-1;k=edge[k].next){ int v = edge[k].v,w=edge[k].w; if(level[v]==level[u]+1&&w!=0){ int MIN = min(increaseRoad-ret,w); w = dfs(v,des,MIN); if(w > 0) { edge[k].w -=w; edge[k^1].w+=w; ret+=w; if(ret==increaseRoad) return ret; } else level[v] = -1; if(increaseRoad==0) break; } } if(ret==0) level[u]=-1; return ret; } int Dinic(int src,int des) { int ans = 0; while(BFS(src,des)!=-1) ans+=dfs(src,des,INF); return ans; } int main() { int c,l; scanf("%d%d",&c,&l); init(); int src = 0,des = c+l+1; for(int i=1; i<=c; i++) { scanf("%d%d",&cow[i].minSPF,&cow[i].maxSPF); addEdge(i+l,des,1,tot); } for(int i=1; i<=l; i++) { int a,b; scanf("%d%d",&a,&b); addEdge(src,i,b,tot); for(int j=1; j<=c; j++) { if(a>=cow[j].minSPF&&a<=cow[j].maxSPF) { addEdge(i,j+l,1,tot); } } } printf("%d\n",Dinic(src,des)); }