基于Python的三种Bandit算法的实现

最近在看推荐系统方面的东西,看到Bandit算法的几种基本实现思路,看到网上没有很好的代码实现,将文中的三种经典的代码实现了一下。

算法的具体介绍就不写啦,可以参考一下blog:

https://blog.csdn.net/z1185196212/article/details/53374194

https://blog.csdn.net/dengxing1234/article/details/73188731

 

e_greedy算法:

以epsilon的概率选择当前最大的,以1-epsilon概率随机选择。

import numpy as np

T = 1000
N = 10
true_award = np.random.uniform(0,1,N)
estimated_award = np.zeros(N)
item_count = np.zeros(N)
epsilon = 0.1

def e_greedy():
    choose = np.random.binomial(n=1,p=epsilon)
    if choose:
        item = np.argmax(estimated_award)
        award = np.random.binomial(n=1,p=true_award[item])
    else:
        item = np.random.choice(N, 1)
        award = np.random.binomial(n=1,p=true_award[item])
    return item, award

total_award = 0
for t in range(T):
    item, award = e_greedy()
    total_award+=award
    estimated_award[item] += award
    item_count[item]+=1

for i in range(N):
    estimated_award[i] /= item_count[i]
print(true_award)
print(estimated_award)
print(total_award)

Thompson Sampling算法:

对每个arm以beta(win[arm], lose[arm])产生随机数,选择最大的随机数作为本轮选择的arm。

import numpy as np

T = 1000
N = 10
true_award = np.random.uniform(0,1,N)
win = np.zeros(N)
lose = np.zeros(N)
estimated_award = np.zeros(N)


def Thompson_sampling():
    arm_prob = [np.random.beta(win[i]+1, lose[i]+1) for i in range(N)]
    item = np.argmax(arm_prob)
    reward = np.random.binomial(n=1,p=true_award[item])
    return item, reward

total_reward = 0
for t in range(T):
    item, reward = Thompson_sampling()
    if reward==1:
        win[item]+=1
    else:
        lose[item]+=1
    total_reward+=reward

for i in range(N):
    estimated_award[i] = win[i]/(win[i]+lose[i])
print(true_award)
print(estimated_award)
print(total_reward)

UCB算法:

不断的对概率进行调整,用观测概率 p'+ 误差delta 对真实概率 p进行估计。

import numpy as np

T = 1000
N = 10

## 真实吐钱概率
true_award = np.random.uniform(low=0, high=1,size=N)

estimated_award = np.zeros(N)
choose_count = np.zeros(N)

total_award = 0

def cal_delta(T, item):
    if choose_count[item] == 0:
        return 1
    else:
        return np.sqrt(2*np.log(T) / choose_count[item])

def UCB(t, N):
    upper_bound_probs = [estimated_award[item] + cal_delta(t, item) for item in range(N)]
    item = np.argmax(upper_bound_probs)
    reward = np.random.binomial(n=1, p=true_award[item])
    return item, reward


for t in range(1,T+1):
    item, reward = UCB(t, N)
    total_award += reward

    estimated_award[item] = (choose_count[item]*estimated_award[item] + reward) / (choose_count[item]+1)
    choose_count[item]+=1

print(true_award)
print(estimated_award)
print(total_award)

 

posted @ 2020-11-19 11:01  樱花庄的龙之介大人  阅读(835)  评论(0编辑  收藏  举报