2.1 截木板 【贪心法(Huffman 编码)】
截断一块木板时,开销为此木板的长度。现在将一根很长的木板截成 N 块,第 i 块长度为 Li 。求最小开销。
Limits: (1 <= N <= 20000, 0 <= Li <= 50000)
样例: 输入: N = 3, L = {8, 5, 8} 输出: 34 (21 + 13)
思路:方法1. 根据 N 块木板长度,构建 Huffman 树。 时间复杂度:O(N2)
typedef long long ll; void solve(int L[], int N) { ll cost = 0; while (N > 1) { int firMin = 0, secMin = 1; if (L[firMin] > L[secMin]) swap(L[firMin], L[secMin]); for (int i = 2; i < N; ++i) { if (L[i] < L[firMin]) { secMin = firMin; firMin = i; } else if (L[i] < L[secMin]) { secMin = i; } } int tmp = L[firMin] + L[secMin]; cost += tmp; if(firMin == N-1) L[secMin] = tmp; else { L[firMin] = tmp; L[secMin] = L[N-1]; } N--; } cout << cost << endl; /*printf("%lld\n", cost);*/ }
方法2:优先级队列 (基于堆实现)。 时间复杂度: O(NlogN)
typedef long long ll; void solve(int L[], int N) { ll cost = 0; /*** 实现一个从小到大取值的优先级队列 ***/ priority_queue<int, vector<int>, greater<int> > que; for (int i = 0; i < N; i++) { que.push(L[i]); } while (que.size() > 1) { int L1 = que.top(); que.pop(); int L2 = que.top(); que.pop(); cost += L1 + L2; que.push(L1 + L2); } cout << cost << endl; /*printf("%lld\n", cost);*/ }