素数: 除 1 外只能被 1 和自身整除的数。
方法一:
#include <stdio.h> #define N 1000000 int num = 0; int prime(int n) { int i; if(n % 2 == 0) return (n == 2);//remove 1/2*n if(n % 3 == 0) return (n == 3);//remove 1/3*n if(n % 5 == 0) return (n == 5);//remove 1/5*n for(i = 7; i*i <= n; i += 2) //optimal for i < n^1/2 if(n % i == 0) return 0; return 1; } void main() { int i; for(i = 2; i < N; ++i) if(prime(i)) printf("%-4d %d\n", ++num, i); }
方法二(筛选法):
#include <stdio.h> #include <string.h> #include <math.h> #include <time.h> const int n = 10000000; bool is_prime[n]; int main() { int i, j, cnt = 0; clock_t time = clock(); memset(is_prime, 0xff, sizeof(is_prime)); //is_prime[0] = is_prime[1] = 0; int bound = (int)sqrt((float(n))); for(i = 2; i <= bound; ++i) { if(is_prime[i]) { for(j = 2*i; j < n; j += i) is_prime[j] = 0; } } for(i = 2; i < n; ++i) if(is_prime[i]) ++cnt; printf("%dms, %d个素数\n", clock() - time, cnt); return 0; }
set n = 1 000 000
应用:求约数的个数:
#include <stdio.h> int prime(int n) { int i; if(n % 2 == 0) return (n == 2);//remove 1/2*n if(n % 3 == 0) return (n == 3);//remove 1/3*n if(n % 5 == 0) return (n == 5);//remove 1/5*n for(i = 7; i*i <= n; i += 2) //optimal for i < n^1/2 if(n % i == 0) return 0; return 1; } void main() { int k, i, tmp, cnt, ans; int D[] = {12, 36, 1248888228}; for (k = 0; k < sizeof(D)/4; ++k) { // D[k] tmp = D[k], ans = 1; for (i = 2; i <= tmp; ++i) { cnt = 1; while (tmp % i == 0) { tmp /= i; cnt++; } ans *= cnt; } printf("%-12d%d个约数\n", D[k], ans); } }