天气预报爬虫示例
首先,确认爬取目标:
http://www.weather.com.cn/weather/101010100.shtml
爬取代码:
import requests from bs4 import BeautifulSoup import csv import json def getHTMLtext(url): """请求获得网页内容""" try: r = requests.get(url, timeout=30) r.raise_for_status() r.encoding = r.apparent_encoding print("成功访问") return r.text except: print("访问错误") return " " def get_content(html): """处理得到有用信息保存数据文件""" final = [] # 初始化一个列表保存数据 bs = BeautifulSoup(html, "html.parser") # 创建BeautifulSoup对象 body = bs.body data = body.find('div', {'id': '7d'}) # 找到div标签且id = 7d # 下面爬取当天的数据 data2 = body.find_all('div', {'class': 'left-div'}) text = data2[2].find('script').string text = text[text.index('=') + 1:-2] # 移除改var data=将其变为json数据 jd = json.loads(text) dayone = jd['od']['od2'] # 找到当天的数据 final_day = [] # 存放当天的数据 count = 0 for i in dayone: temp = [] if count <= 23: temp.append(i['od21']) # 添加时间 temp.append(i['od22']) # 添加当前时刻温度 temp.append(i['od24']) # 添加当前时刻风力方向 temp.append(i['od25']) # 添加当前时刻风级 temp.append(i['od26']) # 添加当前时刻降水量 temp.append(i['od27']) # 添加当前时刻相对湿度 temp.append(i['od28']) # 添加当前时刻控制质量 # print(temp) final_day.append(temp) count = count + 1 # 下面爬取7天的数据 ul = data.find('ul') # 找到所有的ul标签 li = ul.find_all('li') # 找到左右的li标签 i = 0 # 控制爬取的天数 for day in li: # 遍历找到的每一个li if i < 7 and i > 0: temp = [] # 临时存放每天的数据 date = day.find('h1').string # 得到日期 date = date[0:date.index('日')] # 取出日期号 temp.append(date) inf = day.find_all('p') # 找出li下面的p标签,提取第一个p标签的值,即天气 temp.append(inf[0].string) tem_low = inf[1].find('i').string # 找到最低气温 if inf[1].find('span') is None: # 天气预报可能没有最高气温 tem_high = None else: tem_high = inf[1].find('span').string # 找到最高气温 temp.append(tem_low[:-1]) if tem_high[-1] == '℃': temp.append(tem_high[:-1]) else: temp.append(tem_high) wind = inf[2].find_all('span') # 找到风向 for j in wind: temp.append(j['title']) wind_scale = inf[2].find('i').string # 找到风级 index1 = wind_scale.index('级') temp.append(int(wind_scale[index1 - 1:index1])) final.append(temp) i = i + 1 return final_day, final # print(final) def get_content2(html): """处理得到有用信息保存数据文件""" final = [] # 初始化一个列表保存数据 bs = BeautifulSoup(html, "html.parser") # 创建BeautifulSoup对象 body = bs.body data = body.find('div', {'id': '15d'}) # 找到div标签且id = 15d ul = data.find('ul') # 找到所有的ul标签 li = ul.find_all('li') # 找到左右的li标签 final = [] i = 0 # 控制爬取的天数 for day in li: # 遍历找到的每一个li if i < 8: temp = [] # 临时存放每天的数据 date = day.find('span', {'class': 'time'}).string # 得到日期 date = date[date.index('(') + 1:-2] # 取出日期号 temp.append(date) weather = day.find('span', { 'class': 'wea'}).string # 找到天气 temp.append(weather) tem = day.find('span', { 'class': 'tem'}).text # 找到温度 temp.append(tem[tem.index('/') + 1:-1]) # 找到最低气温 temp.append(tem[:tem.index('/') - 1]) # 找到最高气温 wind = day.find('span', {'class': 'wind'}).string # 找到风向 if '转' in wind: # 如果有风向变化 temp.append(wind[:wind.index('转')]) temp.append(wind[wind.index('转') + 1:]) else: # 如果没有风向变化,前后风向一致 temp.append(wind) temp.append(wind) wind_scale = day.find('span', {'class': 'wind1'}).string # 找到风级 index1 = wind_scale.index('级') temp.append(int(wind_scale[index1 - 1:index1])) final.append(temp) return final def write_to_csv(file_name, data, day=14): """保存为csv文件""" with open(file_name, 'a', errors='ignore', newline='') as f: if day == 14: header = ['日期', '天气', '最低气温', '最高气温', '风向1', '风向2', '风级'] else: header = ['小时', '温度', '风力方向', '风级', '降水量', '相对湿度', '空气质量'] f_csv = csv.writer(f) f_csv.writerow(header) f_csv.writerows(data) def main(): """主函数""" # 北京 url1 = 'http://www.weather.com.cn/weather/101010100.shtml' # 7天天气中国天气网 url2 = 'http://www.weather.com.cn/weather15d/101010100.shtml' # 8-15天天气中国天气网 html1 = getHTMLtext(url1) data1, data1_7 = get_content(html1) # 获得1-7天和当天的数据 html2 = getHTMLtext(url2) data8_14 = get_content2(html2) # 获得8-14天数据 data14 = data1_7 + data8_14 # print(data) write_to_csv('weather14.csv', data14, 14) # 保存为csv文件 write_to_csv('weather1.csv', data1, 1) if __name__ == '__main__': main()
爬取结果:
14天结果展示:
matplotlib 分析:
import matplotlib.pyplot as plt import numpy as np import pandas as pd import math def tem_curve(data): """温度曲线绘制""" hour = list(data['小时']) tem = list(data['温度']) for i in range(0, 24): if math.isnan(int(tem[i])) == True: tem[i] = tem[i - 1] tem_ave = sum(tem) / 24 # 求平均温度 tem_max = max(tem) tem_max_hour = hour[tem.index(tem_max)] # 求最高温度 tem_min = min(tem) tem_min_hour = hour[tem.index(tem_min)] # 求最低温度 x = [] y = [] for i in range(0, 24): x.append(i) y.append(tem[hour.index(i)]) plt.figure(1) plt.plot(x, y, color='red', label='温度') # 画出温度曲线 plt.scatter(x, y, color='red') # 点出每个时刻的温度点 plt.plot([0, 24], [tem_ave, tem_ave], c='blue', linestyle='--', label='平均温度') # 画出平均温度虚线 plt.text(tem_max_hour + 0.15, tem_max + 0.15, str(tem_max), ha='center', va='bottom', fontsize=10.5) # 标出最高温度 plt.text(tem_min_hour + 0.15, tem_min + 0.15, str(tem_min), ha='center', va='bottom', fontsize=10.5) # 标出最低温度 plt.xticks(x) plt.legend() plt.title('一天温度变化曲线图') plt.xlabel('时间/h') plt.ylabel('摄氏度/℃') plt.show() def hum_curve(data): """相对湿度曲线绘制""" hour = list(data['小时']) hum = list(data['相对湿度']) for i in range(0, 24): if math.isnan(hum[i]) == True: hum[i] = hum[i - 1] hum_ave = sum(hum) / 24 # 求平均相对湿度 hum_max = max(hum) hum_max_hour = hour[hum.index(hum_max)] # 求最高相对湿度 hum_min = min(hum) hum_min_hour = hour[hum.index(hum_min)] # 求最低相对湿度 x = [] y = [] for i in range(0, 24): x.append(i) y.append(hum[hour.index(i)]) plt.figure(2) plt.plot(x, y, color='blue', label='相对湿度') # 画出相对湿度曲线 plt.scatter(x, y, color='blue') # 点出每个时刻的相对湿度 plt.plot([0, 24], [hum_ave, hum_ave], c='red', linestyle='--', label='平均相对湿度') # 画出平均相对湿度虚线 plt.text(hum_max_hour + 0.15, hum_max + 0.15, str(hum_max), ha='center', va='bottom', fontsize=10.5) # 标出最高相对湿度 plt.text(hum_min_hour + 0.15, hum_min + 0.15, str(hum_min), ha='center', va='bottom', fontsize=10.5) # 标出最低相对湿度 plt.xticks(x) plt.legend() plt.title('一天相对湿度变化曲线图') plt.xlabel('时间/h') plt.ylabel('百分比/%') plt.show() def air_curve(data): """空气质量曲线绘制""" hour = list(data['小时']) air = list(data['空气质量']) print(type(air[0])) for i in range(0, 24): if math.isnan(air[i]) == True: air[i] = air[i - 1] air_ave = sum(air) / 24 # 求平均空气质量 air_max = max(air) air_max_hour = hour[air.index(air_max)] # 求最高空气质量 air_min = min(air) air_min_hour = hour[air.index(air_min)] # 求最低空气质量 x = [] y = [] for i in range(0, 24): x.append(i) y.append(air[hour.index(i)]) plt.figure(3) for i in range(0, 24): if y[i] <= 50: plt.bar(x[i], y[i], color='lightgreen', width=0.7) # 1等级 elif y[i] <= 100: plt.bar(x[i], y[i], color='wheat', width=0.7) # 2等级 elif y[i] <= 150: plt.bar(x[i], y[i], color='orange', width=0.7) # 3等级 elif y[i] <= 200: plt.bar(x[i], y[i], color='orangered', width=0.7) # 4等级 elif y[i] <= 300: plt.bar(x[i], y[i], color='darkviolet', width=0.7) # 5等级 elif y[i] > 300: plt.bar(x[i], y[i], color='maroon', width=0.7) # 6等级 plt.plot([0, 24], [air_ave, air_ave], c='black', linestyle='--') # 画出平均空气质量虚线 plt.text(air_max_hour + 0.15, air_max + 0.15, str(air_max), ha='center', va='bottom', fontsize=10.5) # 标出最高空气质量 plt.text(air_min_hour + 0.15, air_min + 0.15, str(air_min), ha='center', va='bottom', fontsize=10.5) # 标出最低空气质量 plt.xticks(x) plt.title('一天空气质量变化曲线图') plt.xlabel('时间/h') plt.ylabel('空气质量指数AQI') plt.show() def wind_radar(data): """风向雷达图""" wind = list(data['风力方向']) wind_speed = list(data['风级']) for i in range(0, 24): if wind[i] == "北风": wind[i] = 90 elif wind[i] == "南风": wind[i] = 270 elif wind[i] == "西风": wind[i] = 180 elif wind[i] == "东风": wind[i] = 360 elif wind[i] == "东北风": wind[i] = 45 elif wind[i] == "西北风": wind[i] = 135 elif wind[i] == "西南风": wind[i] = 225 elif wind[i] == "东南风": wind[i] = 315 degs = np.arange(45, 361, 45) temp = [] for deg in degs: speed = [] # 获取 wind_deg 在指定范围的风速平均值数据 for i in range(0, 24): if wind[i] == deg: speed.append(wind_speed[i]) if len(speed) == 0: temp.append(0) else: temp.append(sum(speed) / len(speed)) print(temp) N = 8 theta = np.arange(0. + np.pi / 8, 2 * np.pi + np.pi / 8, 2 * np.pi / 8) # 数据极径 radii = np.array(temp) # 绘制极区图坐标系 plt.axes(polar=True) # 定义每个扇区的RGB值(R,G,B),x越大,对应的颜色越接近蓝色 colors = [(1 - x / max(temp), 1 - x / max(temp), 0.6) for x in radii] plt.bar(theta, radii, width=(2 * np.pi / N), bottom=0.0, color=colors) plt.title('一天风级图', x=0.2, fontsize=20) plt.show() def calc_corr(a, b): """计算相关系数""" a_avg = sum(a) / len(a) b_avg = sum(b) / len(b) cov_ab = sum([(x - a_avg) * (y - b_avg) for x, y in zip(a, b)]) sq = math.sqrt(sum([(x - a_avg) ** 2 for x in a]) * sum([(x - b_avg) ** 2 for x in b])) corr_factor = cov_ab / sq return corr_factor def corr_tem_hum(data): """温湿度相关性分析""" tem = data['温度'] hum = data['相对湿度'] plt.scatter(tem, hum, color='blue') plt.title("温湿度相关性分析图") plt.xlabel("温度/℃") plt.ylabel("相对湿度/%") plt.text(20, 40, "相关系数为:" + str(calc_corr(tem, hum)), fontdict={'size': '10', 'color': 'red'}) plt.show() print("相关系数为:" + str(calc_corr(tem, hum))) def main(): plt.rcParams['font.sans-serif'] = ['SimHei'] # 解决中文显示问题 plt.rcParams['axes.unicode_minus'] = False # 解决负号显示问题 data1 = pd.read_csv('weather1.csv') print(data1) tem_curve(data1) # 温度曲线绘制 # hum_curve(data1) # 相对湿度曲线绘制 # air_curve(data1) # 空气质量曲线绘制 # wind_radar(data1) # 风向雷达图 # corr_tem_hum(data1) # 温湿度相关性分析 if __name__ == '__main__': main()
分析结果:
引用"虫师":生活依旧,工作依旧,学习依旧,趁着对技术还热情,继续学习与总结。