CGAN和DCGAN

CGAN 和 DCGAN

import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
import numpy as np
import matplotlib.pyplot as plt

# 基本参数
z_dim = 100
batch_size = 128
learning_rate = 0.0002
total_epochs = 30

# 使用GPU训练,可以在菜单 "代码执行工具" -> "更改运行时类型" 里进行设置
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# 加载MNIST数据集
dataloader = torch.utils.data.DataLoader(
    datasets.MNIST('./data', train=True, download=True,
        transform=transforms.Compose([transforms.ToTensor(),transforms.Normalize((0.1307,), (0.3081,))])
        ), batch_size, shuffle=False, drop_last=True)
CGAN
  • 下面分别是判别器和生成器的网络结构可以看出网络结构非常简单,具体如下:

    • 生成器:(784 + 10) ==> 512 ==> 256 ==> 1
    • 判别器:(100 + 10) ==> 128 ==> 256 ==> 512 ==> 784

    可以看出,去掉生成器和判别器那 10 维的标签信息,和普通的GAN是完全一样的。下面是网络的具体实现代码:

    class Discriminator(nn.Module):
    	'''全连接判别器,用于1x28x28的MNIST数据,输出是数据和类别'''
    	def __init__(self):
    		super(Discriminator, self).__init__()
    		self.model = nn.Sequential(
    			  nn.Linear(28*28+10, 512),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(512, 256),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(256, 1),
    			  nn.Sigmoid()
    		)
      
    	def forward(self, x, c):
    		x = x.view(x.size(0), -1)
    		validity = self.model(torch.cat([x, c], -1))
    		return validity
    
    class Generator(nn.Module):
    	'''全连接生成器,用于1x28x28的MNIST数据,输入是噪声和类别'''
    	def __init__(self, z_dim):
    		super(Generator, self).__init__()
    		self.model = nn.Sequential(
    			  nn.Linear(z_dim+10, 128),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(128, 256),
    			  nn.BatchNorm1d(256, 0.8),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(256, 512),
    			  nn.BatchNorm1d(512, 0.8),
    			  nn.LeakyReLU(0.2, inplace=True),
    			  nn.Linear(in_features=512, out_features=28*28),
    			  nn.Tanh()
    	 	)
    
    	def forward(self, z, c):
    		x = self.model(torch.cat([z, c], dim=1))
    		x = x.view(-1, 1, 28, 28)
    		return x
    
  • 定义相关模型

    # 初始化构建判别器和生成器
    discriminator = Discriminator().to(device)
    generator = Generator(z_dim=z_dim).to(device)
    
    # 初始化二值交叉熵损失
    bce = torch.nn.BCELoss().to(device)
    ones = torch.ones(batch_size).to(device)
    zeros = torch.zeros(batch_size).to(device)
    
    # 初始化优化器,使用Adam优化器
    g_optimizer = optim.Adam(generator.parameters(), lr=learning_rate)
    d_optimizer = optim.Adam(discriminator.parameters(), lr=learning_rate)
    
  • 开始训练

    # 开始训练,一共训练total_epochs
    for epoch in range(total_epochs):
    
    	# torch.nn.Module.train() 指的是模型启用 BatchNormalization 和 Dropout
    	# torch.nn.Module.eval() 指的是模型不启用 BatchNormalization 和 Dropout
    	# 因此,train()一般在训练时用到, eval() 一般在测试时用到
    	generator = generator.train()
    
    	# 训练一个epoch
    	for i, data in enumerate(dataloader):
    
    		# 加载真实数据
    		real_images, real_labels = data
    		real_images = real_images.to(device)
    		# 把对应的标签转化成 one-hot 类型
    		tmp = torch.FloatTensor(real_labels.size(0), 10).zero_()
    		real_labels = tmp.scatter_(dim=1, index=torch.LongTensor(real_labels.view(-1, 1)), value=1)
    		real_labels = real_labels.to(device)
    
    		# 生成数据
    		# 用正态分布中采样batch_size个随机噪声
    		z = torch.randn([batch_size, z_dim]).to(device)
    		# 生成 batch_size 个 ont-hot 标签
    		c = torch.FloatTensor(batch_size, 10).zero_()
    		c = c.scatter_(dim=1, index=torch.LongTensor(np.random.choice(10, batch_size).reshape([batch_size, 1])), value=1)
    		c = c.to(device)
    		# 生成数据
    		fake_images = generator(z,c)
    
    		# 计算判别器损失,并优化判别器
    		real_loss = bce(discriminator(real_images, real_labels), ones)
    		fake_loss = bce(discriminator(fake_images.detach(), c), zeros)
    		d_loss = real_loss + fake_loss
    
    		d_optimizer.zero_grad()
    		d_loss.backward()
    		d_optimizer.step()
    
    		# 计算生成器损失,并优化生成器
    		g_loss = bce(discriminator(fake_images, c), ones)
    
    		g_optimizer.zero_grad()
    		g_loss.backward()
    		g_optimizer.step()
    
    	# 输出损失
    	print("[Epoch %d/%d] [D loss: %f] [G loss: %f]" % (epoch, total_epochs, d_loss.item(), g_loss.item()))
    
  • 用随机噪声生成一组图像,看看CGAN的效果:

    #用于生成效果图
    # 生成100个随机噪声向量
    fixed_z = torch.randn([100, z_dim]).to(device)
    # 生成100个one_hot向量,每类10个
    fixed_c = torch.FloatTensor(100, 10).zero_()
    fixed_c = fixed_c.scatter_(dim=1, index=torch.LongTensor(np.array(np.arange(0, 10).tolist()*10).reshape([100, 1])), value=1)
    fixed_c = fixed_c.to(device)
    
    generator = generator.eval()
    fixed_fake_images = generator(fixed_z, fixed_c)
    
    plt.figure(figsize=(8, 8))
    for j in range(10):
        for i in range(10):
            img = fixed_fake_images[j*10+i, 0, :, :].detach().cpu().numpy()
            img = img.reshape([28, 28])
            plt.subplot(10, 10, j*10+i+1)
            plt.imshow(img, 'gray')
    

DCGAN
  • 下面分别是判别器和生成器的网络结构,和之前类似,只是使用了卷积结构。

    class D_dcgan(nn.Module):
    	'''滑动卷积判别器'''
    	def __init__(self):
    		super(D_dcgan, self).__init__()
    		self.conv = nn.Sequential(
                # 第一个滑动卷积层,不使用BN,LRelu激活函数
                nn.Conv2d(in_channels=1, out_channels=16, kernel_size=3, stride=2, padding=1),
                nn.LeakyReLU(0.2, inplace=True),
                # 第二个滑动卷积层,包含BN,LRelu激活函数
                nn.Conv2d(in_channels=16, out_channels=32, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(32),
                nn.LeakyReLU(0.2, inplace=True),
                # 第三个滑动卷积层,包含BN,LRelu激活函数
                nn.Conv2d(in_channels=32, out_channels=64, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(64),
                nn.LeakyReLU(0.2, inplace=True),
                # 第四个滑动卷积层,包含BN,LRelu激活函数
                nn.Conv2d(in_channels=64, out_channels=128, kernel_size=4, stride=1),
                nn.BatchNorm2d(128),
                nn.LeakyReLU(0.2, inplace=True)
            )
    
    		# 全连接层+Sigmoid激活函数
    		self.linear = nn.Sequential(nn.Linear(in_features=128, out_features=1), nn.Sigmoid())
    
    	def forward(self, x):
    		x = self.conv(x)
    		x = x.view(x.size(0), -1)
    		validity = self.linear(x)
    		return validity
    
    class G_dcgan(nn.Module):
    	'''反滑动卷积生成器'''
    
    	def __init__(self, z_dim):
    		super(G_dcgan, self).__init__()
    		self.z_dim = z_dim
    		# 第一层:把输入线性变换成256x4x4的矩阵,并在这个基础上做反卷机操作
    		self.linear = nn.Linear(self.z_dim, 4*4*256)
    		self.model = nn.Sequential(
                # 第二层:bn+relu
                nn.ConvTranspose2d(in_channels=256, out_channels=128, kernel_size=3, stride=2, padding=0),
                nn.BatchNorm2d(128),
                nn.ReLU(inplace=True),
                # 第三层:bn+relu
                nn.ConvTranspose2d(in_channels=128, out_channels=64, kernel_size=3, stride=2, padding=1),
                nn.BatchNorm2d(64),
                nn.ReLU(inplace=True),
                # 第四层:不使用BN,使用tanh激活函数
                nn.ConvTranspose2d(in_channels=64, out_channels=1, kernel_size=4, stride=2, padding=2),
                nn.Tanh()
            )
    
    	def forward(self, z):
    		# 把随机噪声经过线性变换,resize成256x4x4的大小
    		x = self.linear(z)
    		x = x.view([x.size(0), 256, 4, 4])
    		# 生成图片
    		x = self.model(x)
    		return x
    
  • 定义相关模型

    # 构建判别器和生成器
    d_dcgan = D_dcgan().to(device)
    g_dcgan = G_dcgan(z_dim=z_dim).to(device)
    
    def weights_init_normal(m):
        classname = m.__class__.__name__
        if classname.find('Conv') != -1:
            torch.nn.init.normal_(m.weight.data, 0.0, 0.02)
        elif classname.find('BatchNorm2d') != -1:
            torch.nn.init.normal_(m.weight.data, 1.0, 0.02)
            torch.nn.init.constant_(m.bias.data, 0.0)
    
    # 使用均值为0,方差为0.02的正态分布初始化神经网络
    d_dcgan.apply(weights_init_normal)
    g_dcgan.apply(weights_init_normal)
    
    # 初始化优化器,使用Adam优化器
    g_dcgan_optim = optim.Adam(g_dcgan.parameters(), lr=learning_rate)
    d_dcgan_optim = optim.Adam(d_dcgan.parameters(), lr=learning_rate)
    
    # 加载MNIST数据集,和之前不同的是,DCGAN输入的图像被 resize 成 32*32 像素
    dcgan_dataloader = torch.utils.data.DataLoader(
        datasets.MNIST('./data', train=True, download=True,
            transform=transforms.Compose([transforms.Resize(32), transforms.ToTensor(),transforms.Normalize((0.5,), (0.5,))])
            ), batch_size, shuffle=True, drop_last=True)
    
  • 开始训练

    # 开始训练,一共训练 total_epochs
    
    for e in range(total_epochs):
    
    	# 给generator启用 BatchNormalization
    	g_dcgan = g_dcgan.train()
    	# 训练一个epoch
    	for i, data in enumerate(dcgan_dataloader):
    
    		# 加载真实数据,不加载标签
    		real_images, _ = data
    		real_images = real_images.to(device)
    
    		# 用正态分布中采样batch_size个噪声,然后生成对应的图片
    		z = torch.randn([batch_size, z_dim]).to(device)
    		fake_images = g_dcgan(z)
    
    		# 计算判别器损失,并优化判别器
    		real_loss = bce(d_dcgan(real_images), ones)
    		fake_loss = bce(d_dcgan(fake_images.detach()), zeros)
    		d_loss = real_loss + fake_loss
    
    		d_dcgan_optim.zero_grad()
    		d_loss.backward()
    		d_dcgan_optim.step()
    
    		# 计算生成器损失,并优化生成器
    		g_loss = bce(d_dcgan(fake_images), ones)
    
    		g_dcgan_optim.zero_grad()
    		g_loss.backward()
    		g_dcgan_optim.step()
    		
        # 输出损失
    	print ("[Epoch %d/%d] [D loss: %f] [G loss: %f]" % (e, total_epochs, d_loss.item(), g_loss.item()))
    
  • 用一组随机噪声输出图像,看看DCGAN的效果:

    #用于生成效果图
    # 生成100个随机噪声向量
    fixed_z = torch.randn([100, z_dim]).to(device)
    g_dcgan = g_dcgan.eval()
    fixed_fake_images = g_dcgan(fixed_z)
    
    plt.figure(figsize=(8, 8))
    for j in range(10):
        for i in range(10):
            img = fixed_fake_images[j*10+i, 0, :, :].detach().cpu().numpy()
            img = img.reshape([32, 32])
            plt.subplot(10, 10, j*10+i+1)
            plt.imshow(img, 'gray')
    

posted @ 2020-09-12 16:36  lixinaa  阅读(1341)  评论(0编辑  收藏  举报