Python作业6--中国大学排名数据分析与可视化、豆瓣图书评论数据分析与可视化

import requests
from bs4 import BeautifulSoup as bs
import pandas as pd
from matplotlib import pyplot as plt


def get_rank(url):
    count = 0
    rank = []
    headers = {
        "user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.3"
    }
    resp = requests.get(url, headers=headers).content.decode()
    soup = bs(resp, "lxml")
    univname = soup.find_all('a', class_="name-cn")
    for i in univname:
        if count != 10:
            university = i.text.replace(" ", "")
            score = soup.select("#content-box > div.rk-table-box > table > tbody > tr:nth-child({}) > td:nth-child(5)"
                                .format(count + 1))[0].text.strip()
            rank.append([university, score])
        else:
            break
        count += 1
    return rank


total = []
u_year = 2015
for i in range(15, 20):
    url = "https://www.shanghairanking.cn/rankings/bcur/20{}11".format(i)
    print(url)
    title = ['学校名称', '总分']
    df = pd.DataFrame(get_rank(url), columns=title)
    total.append(df)
for i in total:
    plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
    x = list(i["学校名称"])[::-1]
    y = list(i["总分"])[::-1]
    # 1.创建画布
    plt.figure(figsize=(20, 8), dpi=100)
    # 2.绘制图像
    plt.plot(x, y, label="大学排名")
    # 2.2 添加网格显示
    plt.grid(True, linestyle="--", alpha=0.5)
    # 2.3 添加描述信息
    plt.xlabel("大学名称")
    plt.ylabel("总分")
    plt.title(str(u_year) + "年软科中国最好大学排名Top10", fontsize=20)
    # 2.5 添加图例
    plt.legend(loc="best")
    # 3.图像显示
    plt.savefig(str(u_year)+".png")
    plt.show()

    u_year += 1

while True:
    info = input("输入学校名称和年份:")
    count = 0
    university, year = info.split()
    year = int(year)
    judge = 2019 - year
    tmp = total[::-1]
    if 4 >= judge >= 0:
        name = list(total[judge - 1]["学校名称"])
        for j in name:
            if university == j:
                print(university + "在{0}年排名第{1}".format(year, count + 1))
                break
            count += 1
        if count ==10:
            print("很抱歉,没有该学校的排名记录!!!")
            print("请选择以下选项:")
            print("   1.继续查询")
            print("   2.结束查询")
            select = int(input(""))

            if select == 1:
                continue
            elif select == 2:
                break
        else:
            break
    else:
        print("很抱歉,没有该年份的排名记录!!!")
        print("请选择以下选项:")
        print("   1.继续查询")
        print("   2.结束查询")
        select = int(input(""))

        if select == 1:
            continue
        elif select == 2:
            break
View Code

 

 

 

 

 

 

 

 

 

豆瓣图书评论数据分析与可视化

import re
from collections import Counter

import requests
# from lxml import etree
from lxml import etree

import pandas as pd
import jieba
import matplotlib.pyplot as plt
from wordcloud import WordCloud

headers = {
     # "User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.4951.54 Safari/537.36 Edg/101.0.1210.39"

"User-Agent": "Mozilla/5.0 (Macintosh; Intel Mac OS X 10_14_6) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/101.0.0.0 Safari/537.36"
}

comments = []
words = []


def regex_change(line):
    # 前缀的正则
    username_regex = re.compile(r"^\d+::")
    # URL,为了防止对中文的过滤,所以使用[a-zA-Z0-9]而不是\w
    url_regex = re.compile(r"""
        (https?://)?
        ([a-zA-Z0-9]+)
        (\.[a-zA-Z0-9]+)
        (\.[a-zA-Z0-9]+)*
        (/[a-zA-Z0-9]+)*
    """, re.VERBOSE | re.IGNORECASE)
    # 剔除日期
    data_regex = re.compile(u"""        #utf-8编码
        年 |
        月 |
        日 |
        (周一) |
        (周二) | 
        (周三) | 
        (周四) | 
        (周五) | 
        (周六)
    """, re.VERBOSE)
    # 剔除所有数字
    decimal_regex = re.compile(r"[^a-zA-Z]\d+")
    # 剔除空格
    space_regex = re.compile(r"\s+")
    regEx = "[\n”“|,,;;''/?! 。的了是]"  # 去除字符串中的换行符、中文冒号、|,需要去除什么字符就在里面写什么字符
    line = re.sub(regEx, "", line)
    line = username_regex.sub(r"", line)
    line = url_regex.sub(r"", line)
    line = data_regex.sub(r"", line)
    line = decimal_regex.sub(r"", line)
    line = space_regex.sub(r"", line)
    return line


def getComments(url):
    score = 0
    resp = requests.get(url, headers=headers).text
    html = etree.HTML(resp)
    comment_list = html.xpath(".//div[@class='comment']")
    for comment in comment_list:
        status = ""
        name = comment.xpath(".//span[@class='comment-info']/a/text()")[0]  # 用户名
        content = comment.xpath(".//p[@class='comment-content']/span[@class='short']/text()")[0]  # 短评内容
        content = str(content).strip()
        word = jieba.cut(content, cut_all=False, HMM=False)
        time = comment.xpath(".//span[@class='comment-info']/a/text()")[1]  # 评论时间
        mark = comment.xpath(".//span[@class='comment-info']/span/@title")  # 评分
        if len(mark) == 0:
            score = 0
        else:
            for i in mark:
                status = str(i)
            if status == "力荐":
                score = 5
            elif status == "推荐":
                score = 4
            elif status == "还行":
                score = 3
            elif status == "较差":
                score = 2
            elif status == "很差":
                score = 1
        good = comment.xpath(".//span[@class='comment-vote']/span[@class='vote-count']/text()")[0]  # 点赞数(有用数)
        comments.append([str(name), content, str(time), score, int(good)])
        for i in word:
            if len(regex_change(i)) >= 2:
                words.append(regex_change(i))


def getWordCloud(words):
    # 生成词云
    all_words = []
    all_words += [word for word in words]
    dict_words = dict(Counter(all_words))
    bow_words = sorted(dict_words.items(), key=lambda d: d[1], reverse=True)
    print("热词前10位:")
    for i in range(10):
        print(bow_words[i])
    text = ' '.join(words)

    w = WordCloud(background_color='white',
                     width=1000,
                     height=700,
                     font_path='simhei.ttf',
                     margin=10).generate(text)
    plt.show()
    plt.imshow(w)
    w.to_file('wordcloud.png')


print("请选择以下选项:")
print("   1.热门评论")
print("   2.最新评论")
info = int(input())
print("前10位短评信息:")
title = ['用户名', '短评内容', '评论时间', '评分', '点赞数']
if info == 1:
    comments = []
    words = []
    for i in range(0, 60, 20):
        url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=new_score".format(
            i)  # 前3页短评信息(热门)
        getComments(url)
    df = pd.DataFrame(comments, columns=title)
    print(df.head(10))
    print("点赞数前10位的短评信息:")
    df = df.sort_values(by='点赞数', ascending=False)
    print(df.head(10))
    getWordCloud(words)
elif info == 2:
    comments = []
    words=[]
    for i in range(0, 60, 20):
        url = "https://book.douban.com/subject/10517238/comments/?start={}&limit=20&status=P&sort=time".format(
            i)  # 前3页短评信息(最新)
        getComments(url)
    df = pd.DataFrame(comments, columns=title)
    print(df.head(10))
    print("点赞数前10位的短评信息:")
    df = df.sort_values(by='点赞数', ascending=False)
    print(df.head(10))
    getWordCloud(words)
View Code

 

 

 

posted @ 2022-05-10 07:16  大雄的脑袋  阅读(127)  评论(0编辑  收藏  举报